Research Article Details
Article ID: | A12870 |
PMID: | 30248445 |
Source: | Free Radic Biol Med |
Title: | Maternal perinatal calorie restriction temporally regulates the hepatic autophagy and redox status in male rat. |
Abstract: | Intrauterine growth restriction (IUGR) leads to adult obesity, cardiovascular disease, and non-alcoholic fatty liver disease/steatohepatitis. Animal models have shown that combined intrauterine and early postnatal calorie restriction (IPCR) ameliorates these sequelae in adult life. The mechanism by which IPCR protects against adult onset disease is not understood. Autophagy, a lysosomal degradative process, recycles cellular constituents and eliminates damaged organelles, proteins, and oxidants. In this study, we hypothesized that IPCR could regulate autophagy in the liver of male rat offspring. At birth (d1) of male IUGR rat offspring and on day 21 (p21) of life, IPCR male rat offspring had a profound decrease in hepatic autophagy in all three stages of development: initiation, elongation, and maturation. However, upon receiving a normal diet ad-lib throughout adulthood, aged IPCR rats (day 450 of life (p450)), had increased hepatic autophagy, in direct contrast to what was seen in early life. The decreased autophagy at d21 led to the accumulation of ubiquitinated proteins and lipid oxidative products, whereas the increased autophagy in late life had the opposite effect. Oxidized lipids were unchanged at d1 by IUGR treatment indicating that decreased autophagy precedes oxidative stress in early life. When cellular signaling pathways regulating autophagy were examined, the 5' adenosine monophosphate-activated protein kinase pathway (AMPK), and not endoplasmic stress pathways, was found to be altered, suggesting that autophagy is regulated through AMPK signaling pathway in IPCR rats. Taken together, this study reveals that the perinatal nutritional status establishes a nutritionally sensitive memory that enhances hepatic autophagy in late life, a process that perhaps acts as a protective mechanism to limited nutrition. |
DOI: | 10.1016/j.freeradbiomed.2018.09.029 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S13 | Anti-apoptosis | hepatocyte apoptosis; hepatic autophagy; apoptosis | Pan-caspase inhibitor | Emricasan | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T01 | 5'-AMP-activated protein kinase subunit beta-1 | PRKAB1 | activator | Kinase | Q9Y478 | AAKB1_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D158 | Glutathione | Chemical drug | DB00143 | MGST3; HPGDS; GSTM2; GSTM5; GPX7 cofactor; MGST2; GSS; GSTM1; GSTK1; GSTM3; GSTM4; GPX1 cofactor; GPX2 cofactor; GPX3 cofactor | -- | Under clinical trials | Details |