Research Article Details
Article ID: | A12960 |
PMID: | 30208301 |
Source: | Food Chem Toxicol |
Title: | Trigonelline prevents high cholesterol and high fat diet induced hepatic lipid accumulation and lipo-toxicity in C57BL/6J mice, via restoration of hepatic autophagy. |
Abstract: | Non-alcoholic fatty liver disease (NAFLD) is often linked with impaired hepatic autophagy. Here, we studied the alterations in hepatocellular autophagy by high cholesterol and high-fat diet (HC-HF) diet in C57BL/6J mice, and by palmitic acid (PA), in AML-12 and HepG2 cells. Further, we analysed role of Trigonelline (TG), a plant alkaloid, in preventing NAFLD, by modulating autophagy. For this, C57BL/6J mice were fed with Standard Chow (SC) or HC-HF diet, with and without TG for 16 weeks. In-vitro; AML-12 cells and HepG2 cells, were exposed to PA with and without TG, for 24 h. Cellular events related to autophagy, lipogenesis, and lipo-toxicity were studied. The HC-HF diet fed mice showed hepatic autophagy blockade, increased triglycerides and steatosis. PA exposure to AML-12 cells and HepG2 cells induced impaired autophagy, ER stress, resulting in lipotoxicity. TG treatment in HC-HF fed mice, restored hepatic autophagy, and prevented steatosis. TG treated AML-12, and HepG2 cells exposed to PA showed autophagy restoration, and reduced lipotoxicity, however, these effects were diminished in Atg7-/- HepG2 cells, and in the presence of chloroquine. This study shows that HC-HF diet-induced impaired autophagy, and steatosis is prevented by TG, which attributes to its novel mechanism in treating NAFLD. |
DOI: | 10.1016/j.fct.2018.09.011 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S13 | Anti-apoptosis | hepatocyte apoptosis; hepatic autophagy; apoptosis | Pan-caspase inhibitor | Emricasan | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |