Research Article Details
Article ID: | A13275 |
PMID: | 30055803 |
Source: | Biochem Biophys Res Commun |
Title: | Autophagy is involved in acetylshikonin ameliorating non-alcoholic steatohepatitis through AMPK/mTOR pathway. |
Abstract: | Acetylshikonin (AS), a naphthoquinone constituent derived from Lithospermum erythrorhizon, has been revealed various pharmacological activities including anti-oxidative, anti-inflammatory and antifertility effects. Our previous study has illuminated the effects of AS on preventing obesity and hepatic steatosis in db/db mice. However, the effects of AS and the molecular mechanisms for curing non-alcoholic steatohepatitis (NASH) have not yet been studied. Autophagy has been considered as a lysosomal degradative pathway responsible for the removal of cellular lipid droplets through a process called lipophagy, which is recognized as a potential therapeutic approach for NASH. Here we hypothesize that autophagy is involved in the beneficial effects of AS on methionine-choline deficient (MCD) diet-induced NASH of mice. In this study, we observed that AS treatment ameliorated the pathological signs of NASH, and markedly suppressed the levels of hepatic IL-1β and TNF-α cytokines, and hepatocyte apoptotic cells in MCD diet-induced mice. Moreover, immunological analyses showed that the elevated expression of the fibrotic markers including α-SMA, collegen I, collegen III and fibronectin in MCD diet-induced mice were notably down-regulated by AS treatment. Nevertheless, the beneficial effects of AS on ameliorating NASH were notably counteracted by co-administration of chloroquine, an autophagy inhibitor. Furthermore, our data suggested that AS treatment increased hepatocyte autophagy in MCD diet-induced mice via AMPK/mTOR pathway. These findings suggest that AS could be therapeutically effective in the development of NASH by ameliorating steatosis, inflammation, liver injury and fibrosis. |
DOI: | 10.1016/j.bbrc.2018.07.094 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T08 | Tumor necrosis factor | TNF | inhibitor | Cytokine | P01375 | TNFA_HUMAN | Details |
T01 | 5'-AMP-activated protein kinase subunit beta-1 | PRKAB1 | activator | Kinase | Q9Y478 | AAKB1_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |