Research Article Details
Article ID: | A14071 |
PMID: | 29602794 |
Source: | Diabetes Care |
Title: | Specific Hepatic Sphingolipids Relate to Insulin Resistance, Oxidative Stress, and Inflammation in Nonalcoholic Steatohepatitis. |
Abstract: | OBJECTIVE: Insulin resistance and nonalcoholic fatty liver disease have been linked to several lipid metabolites in animals, but their role in humans remains unclear. This study examined the relationship of sphingolipids with hepatic and peripheral metabolism in 21 insulin-resistant obese patients without (NAFL-) or with (NAFL+) nonalcoholic fatty liver and nonalcoholic steatohepatitis (NASH) and 7 healthy lean individuals undergoing tissue biopsies during bariatric or elective abdominal surgery. RESEARCH DESIGN AND METHODS: Hyperinsulinemic-euglycemic clamps with d-[6,6-2H2]glucose were performed to quantify tissue-specific insulin sensitivity. Hepatic oxidative capacity, lipid peroxidation, and the phosphorylated-to-total c-Jun N-terminal kinase (pJNK-to-tJNK) ratio were measured to assess mitochondrial function, oxidative stress, and inflammatory activity. RESULTS: Hepatic total ceramides were higher by 50% and 33% in NASH compared with NAFL+ and NAFL-, respectively. Only in NASH were hepatic dihydroceramides (16:0, 22:0, and 24:1) and lactosylceramides increased. Serum total ceramides and dihydroceramides (hepatic dihydroceramides 22:0 and 24:1) correlated negatively with whole-body but not with hepatic insulin sensitivity. Hepatic maximal respiration related positively to serum lactosylceramide subspecies, hepatic sphinganine, and lactosylceramide 14:0. Liver lipid peroxides (total ceramides, sphingomyelin 22:0) and the pJNK-to-tJNK ratio (ceramide 24:0; hexosylceramides 22:0, 24:0, and 24:1) all positively correlated with the respective hepatic sphingolipids. CONCLUSIONS: Sphingolipid species are not only increased in insulin-resistant humans with NASH but also correlate with hepatic oxidative stress and inflammation, suggesting that these lipids may play a role during progression of simple steatosis to NASH in humans. |
DOI: | 10.2337/dc17-1318 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D010 | Amoxicillin | Chemical drug | DB01060 | -- | -- | Under clinical trials | Details |
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D083 | CLA | Chemical drug | DB01211 | KCNH2; SLCO1B1; SLCO1B3 | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |