Research Article Details
Article ID: | A14649 |
PMID: | 29309075 |
Source: | Food Funct |
Title: | Niga-ichigoside F1 ameliorates high-fat diet-induced hepatic steatosis in male mice by Nrf2 activation. |
Abstract: | Hepatic lipid accumulation and oxidative stress (OS) lead to non-alcoholic fatty liver disease (NAFLD). Thus, we hypothesized that antihyperlipidemic and antioxidant activities of niga-ichigoside F1 (NI) would ameliorate events leading to NAFLD. Lanbuzheng (Geum japonicum Thunb. var. chinense), a type of wild vegetable found in Southwest China, was used to extract NI. Male C57BL/6J mice were fed a standard diet (Con) or a high-fat diet (HFD) (denoted as diet) with or without 40 mg kg-1 NI (defined as treatment) for 12 weeks. Diet-treatment interactions were observed in the final body weight, fat pad mass, respiratory exchange ratio (RER) in the daytime, and energy expenditure during the whole day. Moreover, NI alleviated hepatic steatosis, possibly by significantly interacting with HFD to regulate lipid metabolism genes (including Srebp1c, Acc1, Fasn, Scd1, Cpt1a and Fabp5). We also found significant diet-treatment interactions on superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) activities, and thiobarbituric acid reactive substance (TBARS) levels, as well as the nuclear and cellular Nrf2 protein levels. Significant free fatty acid (FFA)-treatment interactions on Nrf2 nuclear translocation, antioxidant enzymes activities, genes in lipogenesis (Srebp1c, Acc1, Fasn, and Scd1), and fatty acid oxidation (Pparα) and transport (Fabp5 and Cd36) were also detected in 1 mM FFA-treated HepG2 cells with or without 20 μM NI. These beneficial effects of NI on oxidative stress and lipid accumulation were abolished by Nrf2 siRNA. Our data revealed that dietary NI could prevent HFD-induced hepatic steatosis, possibly via interacting with HFD to activate Nrf2 nuclear translocation to maintain a redox status, thus regulating lipid metabolism genes expressions. |
DOI: | 10.1039/c7fo01051f |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T07 | Bile acid receptor | NR1H4 | agonist | Nuclear hormone receptor | Q96RI1 | NR1H4_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T20 | Fatty acid synthase | FASN | inhibitor | Enzyme | P49327 | FAS_HUMAN | Details |
T22 | Stearoyl-CoA desaturase | SCD | inhibitor | Enzyme | O00767 | SCD_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class |
---|
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D589 | Minor allele-specific small interfering RNA | Miscellany | -- | PNPLA3-rs738409 (I148M) variant inhibitor | -- | Under investigation | Details |
D158 | Glutathione | Chemical drug | DB00143 | MGST3; HPGDS; GSTM2; GSTM5; GPX7 cofactor; MGST2; GSS; GSTM1; GSTK1; GSTM3; GSTM4; GPX1 cofactor; GPX2 cofactor; GPX3 cofactor | -- | Under clinical trials | Details |