Research Article Details
Article ID: | A15022 |
PMID: | 29126901 |
Source: | Biochim Biophys Acta Mol Cell Biol Lipids |
Title: | Omega-3 polyunsaturated fatty acids protect human hepatoma cells from developing steatosis through FFA4 (GPR120). |
Abstract: | Protective effect of omega-3 polyunsaturated fatty acids (n-3 PUFA) on non-alcoholic fatty liver disease has been demonstrated. FFA4 (also known as GPR120; a G protein-coupled receptor) has been suggested to be a target of n-3 PUFA. FFA4 expression in hepatocytes has also been reported from liver biopsies in child fatty liver patients. In order to assess the functional role of FFA4 in hepatic steatosis, we used an in vitro model of liver X receptor (LXR)-mediated hepatocellular steatosis. FFA4 expression was confirmed in Hep3B and HepG2 human hepatoma cells. T0901317 (a specific LXR activator) induced lipid accumulation and docosahexaenoic acid (DHA; a representative n-3 PUFA) inhibited lipid accumulation. This DHA-induced inhibition was blunted by treatment of AH7614 (a FFA4 antagonist) and by transfection of FFA4 siRNA. SREBP-1c (a key transcription factor of lipogenesis) was induced by treatment with T0901317, and SREBP-1c induction was also inhibited by DHA at mRNA and protein levels. DHA-induced suppression of SREBP-1c expression was also blunted by FFA4-knockdown. Furthermore, DHA inhibited T0901317-induced lipid accumulation in primary hepatocytes from wild type mice, but not in those from FFA4 deficient mice. In addition, DHA-induced activations of Gq/11 proteins, CaMKK, and AMPK were found to be signaling components of the steatosis protective pathway. The results of this study suggest that n-3 PUFA protect hepatic steatosis by activating FFA4 in hepatocytes, and its signaling cascade sequentially involves FFA4, Gq/11 proteins, CaMKK, AMPK, and SREBP-1c suppression. |
DOI: | 10.1016/j.bbalip.2017.11.002 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs |
---|
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T01 | 5'-AMP-activated protein kinase subunit beta-1 | PRKAB1 | activator | Kinase | Q9Y478 | AAKB1_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class |
---|
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D258 | Omega 3 PUFA | Chemical drug | DB11133 | PPARG ligand; PPARA activator | Hypolipidemic drug | Under clinical trials | Details |
D504 | Polyunsaturated Fatty Acids | Supplement | -- | -- | -- | Under clinical trials | Details |
D105 | DHA | Chemical drug | DB03756 | PPARA ligand; PPARG ligand | Anti-inflammatory | Under clinical trials | Details |
D589 | Minor allele-specific small interfering RNA | Miscellany | -- | PNPLA3-rs738409 (I148M) variant inhibitor | -- | Under investigation | Details |
D055 | Calcium | Chemical drug | DB01373 | CAST; COMP; CP; BMP4; MGP | -- | Under clinical trials | Details |
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D125 | Epanova | Chemical drug | DB11133 | PPARG ligand; PPARA activator | Enhance lipid metabolism | Under clinical trials | Details |