Research Article Details
Article ID: | A17943 |
PMID: | 27462372 |
Source: | Diabetol Metab Syndr |
Title: | Empagliflozin (an SGLT2 inhibitor), alone or in combination with linagliptin (a DPP-4 inhibitor), prevents steatohepatitis in a novel mouse model of non-alcoholic steatohepatitis and diabetes. |
Abstract: | BACKGROUND: Sodium-glucose co-transporter-2 (SGLT2) inhibitors are new oral antidiabetic drugs that reduce hyperglycemia by promoting urinary glucose excretion. Glycosuria produced by SGLT2 inhibitors is associated with weight loss, mainly due to reduced fat volume. We investigated the effects of empagliflozin (selective SGLT2 inhibitor) and linagliptin (DPP-4 inhibitor) on steatohepatitis and fibrosis in a mouse model of non-alcoholic steatohepatitis (NASH) with diabetes. METHODS: A novel NASH model was generated by administration of streptozotocin to C57BL/6J mice at 2 days old, with a high-fat diet from 4 weeks. NASH mice aged 6 weeks were divided into four groups of 6 animals: vehicle, linagliptin (10 mg/kg), empagliflozin (10 mg/kg), and linagliptin + empagliflozin. The histological non-alcoholic fatty liver disease activity score was significantly lower in the empagliflozin and linagliptin + empagliflozin groups than in the vehicle or linagliptin groups. Hepatic expression of inflammatory genes (tumor necrosis factor-α, interleukin-6, and monocyte chemoattractant protein-1) was decreased in the empagliflozin and linagliptin + empagliflozin groups compared with the vehicle group. The collagen deposition with Sirius red staining was significantly reduced in the linagliptin + empagliflozin group compared with the linagliptin or the empagliflozin group. Immunohistochemistry showed that expression of α-smooth muscle actin, a marker of myofibroblasts (fibrosis), was reduced in the linagliptin + empagliflozin group compared with the vehicle group, as was expression of type 1 and 3 collagen mRNA. Linagliptin + empagliflozin decreased expression of mRNAs for genes related to fatty acid synthesis, but did not increase mRNAs for β-oxidation-related genes. CONCLUSIONS: While empagliflozin alone attenuates development of NASH showing anti-steatotic and anti-inflammatory effects, combined administration of empagliflozin and linagliptin can synergistically ameliorates NASH with stronger anti-fibrotic effects. |
DOI: | 10.1186/s13098-016-0169-x |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S08 | Lifestyle measures | Lifestyle intervention; weight loss; diet adaptation; dietary interventions; lifestyle modifications; Exercise | -- | -- | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D122 | Empagliflozin | Chemical drug | DB09038 | SLC5A2 inhibitor; SGLT-2 inhibitor | Improve insulin resistance | Under clinical trials | Details |
D549 | SGLT2 inhibitor | Chemical drug | -- | SGLT2 inhibitor | -- | Under clinical trials | Details |
D205 | Linagliptin | Chemical drug | DB08882 | DPP4 inhibitor | -- | Under clinical trials | Details |