Research Article Details
Article ID: | A21308 |
PMID: | 25415231 |
Source: | Horm Metab Res |
Title: | Leptin improves fatty liver independently of insulin sensitization and appetite suppression in hepatocyte-specific Pten-deficient mice with insulin hypersensitivity. |
Abstract: | Nonalcoholic fatty liver disease (NAFLD) is recognized as the hepatic component of the metabolic syndrome. Although NAFLD is a major cause of cirrhosis and cancer of the liver of unknown cause, no established pharmacological treatment for NAFLD has been established yet. It has been reported that leptin treatment improved fatty liver dramatically as well as insulin resistance and hyperphagia in patients with lipodystrophy. However, it is unclear whether leptin improves fatty liver independently of these metabolic improvements. We investigated the liver effect of leptin independently of insulin sensitization and appetite suppression using hepatocyte-specific Pten-deficient (AlbCrePtenff) mouse, a model of severe fatty liver with insulin hypersensitivity. Male AlbCrePtenff mice were infused subcutaneously with leptin (20 ng/g/h) for 2 weeks using osmotic minipumps. Leptin infusion effectively reduced liver weight, liver triglyceride content, and glutamate pyruvate transaminase (GPT) concentrations as well as food intake and body weight without the change of plasma insulin concentration in AlbCrePtenff mice. Pair-feeding also reduced body weight but not liver triglyceride content. Pair feeding reduced α1 and α2 AMP-activated protein kinase (AMPK) activities and PGC1α gene expression in the liver, while leptin infusion unchanged them. The present study clearly demonstrated that leptin improve fatty liver independently of insulin sensitization and suppression of food intake. It was suggested that leptin improves fatty liver by stimulation of β-oxidation in the liver. The present study might provide a further understanding on the mechanism of metabolic effect of leptin. |
DOI: | 10.1055/s-0034-1395531 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I06 | 811 | Lipodystrophy | A connective tissue disease that is characterized by marked reduction, absence, and/or the redistribution of adipose tissue. https://www.ncbi.nlm.nih.gov/pubmed/25690482, https://www.ncbi.nlm.nih.gov/pubmed/25833179 | disease of anatomical entity/ musculoskeletal system disease/ connective tissue disease | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D545 | Pig placenta extract | Biological extract | -- | -- | -- | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |