Research Article Details
Article ID: | A23396 |
PMID: | 23816341 |
Source: | Diabetol Metab Syndr |
Title: | Pleiotropic effects of rosuvastatin on the glucose metabolism and the subcutaneous and visceral adipose tissue behavior in C57Bl/6 mice. |
Abstract: | The aim of this study was to evaluate whether rosuvastatin (HMG-CoA reductase inhibitor) modulates the carbohydrate and lipid metabolism, the development of non-alcoholic fatty liver disease (NAFLD), and the increase in body mass in a model of diet-induced obesity. Male C57Bl/6 mice (3-months-old) were fed a high-fat diet (HF, 60% lipids) or the standard chow (SC, 10% lipids) for 15 weeks. The animals were then treated with 10 mg/kg/day (HF-R10 group), 20 mg/kg/day (HF-R20), or 40 mg/kg/day (HF-R40) of rosuvastatin for five weeks. The HF diet led to glucose intolerance, insulin resistance, weight gain, increased visceral adiposity with adipocyte hypertrophy, and hepatic steatosis (micro and macrovesicular). The rosuvastatin treatment decreased the adiposity and the adipocyte size in the HF-R10 and HF-R20 groups. In addition, rosuvastatin changed the pattern of fat distribution in the HF-R40 group because more fat was stored subcutaneously than in visceral depots. This redistribution improved the fasting glucose and the glucose intolerance. Rosuvastatin also improved the liver morphology and ultrastructure in a dose-dependent manner. In conclusion, rosuvastatin exerts pleiotropic effects through a dose-dependent improvement of glucose intolerance, insulin sensitivity and NAFLD and changes the fat distribution from visceral to subcutaneous fat depots in a mouse model of diet-induced obesity. |
DOI: | 10.1186/1758-5996-5-32 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |