Research Article Details
Article ID: | A23752 |
PMID: | 23510120 |
Source: | Hepatol Res |
Title: | Clinical usefulness of non-protein respiratory quotient measurement in non-alcoholic fatty liver disease. |
Abstract: | AIM: Little is known about the effects of non-alcoholic fatty liver disease (NAFLD) on energy metabolism, although this disease is associated with metabolic syndrome. We measured non-protein respiratory quotient (npRQ) using indirect calorimetry, which reflects glucose oxidation, and compared this value with histological disease severity in NAFLD patients. METHODS: Subjects were 32 patients who were diagnosed with NAFLD histopathologically. Subjects underwent body composition analysis and indirect calorimetry, and npRQ was calculated. An oral glucose tolerance test was performed, and plasma glucose area under the curve (AUC glucose) was calculated. RESULTS: There were no differences in body mass index, body fat percentage or visceral fat area among fibrosis stage groups. As fibrosis progressed, npRQ significantly decreased (stage 0, 0.895 ± 0.068; stage 1, 0.869 ± 0.067; stage 2, 0.808 ± 0.046; stage 3, 0.798 ± 0.026; P < 0.005). Glucose intolerance worsened and insulin resistance increased with fibrosis stage. npRQ was negatively correlated with AUC glucose (R = -0.6308, P < 0.001), Homeostasis Model of Assessment - Insulin Resistance (R = -0.5045, P < 0.005), fasting glucose (R = -0.4585, P < 0.01) and insulin levels (R = -0.4431, P < 0.05), suggesting that decreased npRQ may reflect impaired glucose tolerance due to insulin resistance, which was associated with fibrosis progression. Estimation of fibrosis stage using npRQ was as accurate as several previously established scoring systems using receiver-operator curve analysis. CONCLUSION: npRQ was significantly decreased in patients with advanced NAFLD. Our data suggest that measurement of npRQ is useful for the estimation of disease severity in NAFLD patients. |
DOI: | 10.1111/hepr.12095 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |