Research Article Details
Article ID: | A23772 |
PMID: | 24843641 |
Source: | J Diabetes Investig |
Title: | Glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1: Incretin actions beyond the pancreas. |
Abstract: | Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are the two primary incretin hormones secreted from the intestine on ingestion of various nutrients to stimulate insulin secretion from pancreatic β-cells glucose-dependently. GIP and GLP-1 undergo degradation by dipeptidyl peptidase-4 (DPP-4), and rapidly lose their biological activities. The actions of GIP and GLP-1 are mediated by their specific receptors, the GIP receptor (GIPR) and the GLP-1 receptor (GLP-1R), which are expressed in pancreatic β-cells, as well as in various tissues and organs. A series of investigations using mice lacking GIPR and/or GLP-1R, as well as mice lacking DPP-4, showed involvement of GIP and GLP-1 in divergent biological activities, some of which could have implications for preventing diabetes-related microvascular complications (e.g., retinopathy, nephropathy and neuropathy) and macrovascular complications (e.g., coronary artery disease, peripheral artery disease and cerebrovascular disease), as well as diabetes-related comorbidity (e.g., obesity, non-alcoholic fatty liver disease, bone fracture and cognitive dysfunction). Furthermore, recent studies using incretin-based drugs, such as GLP-1 receptor agonists, which stably activate GLP-1R signaling, and DPP-4 inhibitors, which enhance both GLP-1R and GIPR signaling, showed that GLP-1 and GIP exert effects possibly linked to prevention or treatment of diabetes-related complications and comorbidities independently of hyperglycemia. We review recent findings on the extrapancreatic effects of GIP and GLP-1 on the heart, brain, kidney, eye and nerves, as well as in the liver, fat and several organs from the perspective of diabetes-related complications and comorbidities. |
DOI: | 10.1111/jdi.12065 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I16 | 6713 | Cerebrovascular disease | An vascular disease that is characterized by dysfunction of the blood vessels supplying the brain. http://en.wikipedia.org/wiki/Cerebrovascular_disease, http://www.ncbi.nlm.nih.gov/books/NBK378/ | disease of anatomical entity/ cardiovascular system disease/ vascular disease/cerebrovascular disease | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D155 | Glucagon | Biological drug | DB00040 | GCGR agonist | Antidiabetic drug | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |