Research Article Details
Article ID: | A23903 |
PMID: | 23394097 |
Source: | Curr Pharm Des |
Title: | Genetic predisposition in NAFLD and NASH: impact on severity of liver disease and response to treatment. |
Abstract: | Liver fat deposition related to systemic insulin resistance defines non-alcoholic fatty liver disease (NAFLD) which, when associated with oxidative hepatocellular damage, inflammation, and activation of fibrogenesis, i.e. non-alcoholic steatohepatitis (NASH), can progress towards cirrhosis and hepatocellular carcinoma. Due to the epidemic of obesity, NAFLD is now the most frequent liver disease and the leading cause of altered liver enzymes in Western countries. Epidemiological, familial, and twin studies provide evidence for an element of heritability of NAFLD. Genetic modifiers of disease severity and progression have been identified through genome-wide association studies. These include the Patatin-like phosholipase domain-containing 3 (PNPLA3) gene variant I148M as a major determinant of inter-individual and ethnicity-related differences in hepatic fat content independent of insulin resistance and serum lipid concentration. Association studies confirm that the I148M polymorphism is also a strong modifier of NASH and progressive hepatic injury. Furthermore, a few large multicentre case-control studies have demonstrated a role for genetic variants implicated in insulin signalling, oxidative stress, and fibrogenesis in the progression of NAFLD towards fibrosing NASH, and confirm that hepatocellular fat accumulation and insulin resistance are key operative mechanisms closely involved in the progression of liver damage. It is now important to explore the molecular mechanisms underlying these associations between gene variants and progressive liver disease, and to evaluate their impact on the response to available therapies. It is hoped that this knowledge will offer further insights into pathogenesis, suggest novel therapeutic targets, and could help guide physicians towards individualised therapy that improves clinical outcome. |
DOI: | 10.2174/13816128113199990381 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |