Research Article Details
Article ID: | A24351 |
PMID: | 22977624 |
Source: | Exp Ther Med |
Title: | Effects of insulin resistance and hepatic lipid accumulation on hepatic mRNA expression levels of apoB, MTP and L-FABP in non-alcoholic fatty liver disease. |
Abstract: | Non-alcoholic fatty liver disease (NAFLD) is considered a hepatic manifestation of metabolic syndrome, which is known to be associated with insulin resistance (IR). NAFLD occurs when the rate of hepatic fatty acid uptake from plasma and de novo fatty acid synthesis is greater than the rate of fatty acid oxidation and excretion as very low-density lipoprotein (VLDL). To estimate the effects of IR on hepatic lipid excretion, mRNA expression levels of genes involved in VLDL assembly were analyzed in NAFLD liver. Twenty-two histologically proven NAFLD patients and 10 healthy control subjects were enrolled in this study. mRNA was extracted from liver biopsy samples and real-time PCR was performed to quantify the expression levels of apolipoprotein B (apoB), microsomal triglyceride transfer protein (MTP) and liver fatty-acid binding protein (L-FABP). Hepatic expression levels of the genes were compared between NAFLD patients and control subjects. In NAFLD patients, we also examined correlations between expression levels of the genes and metabolic factors, including IR, and the extent of obesity and hepatic lipid accumulation. Hepatic expression levels of apoB, MTP and L-FABP were significantly up-regulated in NAFLD patients compared to control subjects. The expression levels of MTP were correlated with those of apoB, but not with those of L-FABP. In the NAFLD liver, the expression levels of MTP were significantly reduced in patients with HOMA-IR >2.5. In addition, a significant reduction in MTP expression was observed in livers with advanced steatosis. Enhanced expression of genes involved in VLDL assembly may be promoted to release excess lipid from NAFLD livers. However, the progression of IR and hepatic steatosis may attenuate this compensatory process. |
DOI: | 10.3892/etm.2011.328 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |