Research Article Details
Article ID: | A25323 |
PMID: | 21956711 |
Source: | Diabetologia |
Title: | Exenatide decreases hepatic fibroblast growth factor 21 resistance in non-alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial. |
Abstract: | AIMS/HYPOTHESIS: Systemic fibroblast growth factor (FGF)21 levels and hepatic FGF21 production are increased in non-alcoholic fatty liver disease patients, suggesting FGF21 resistance. We examined the effects of exenatide on FGF21 in patients with type 2 diabetes and in a diet-induced mouse model of obesity (DIO). METHODS: Type 2 diabetes mellitus patients (n = 24) on diet and/or metformin were randomised (using a table of random numbers) to receive additional treatment consisting of pioglitazone 45 mg/day or combined therapy with pioglitazone (45 mg/day) and exenatide (10 μg twice daily) for 12 months in an open label parallel study at the Baylor Clinic. RESULTS: Twenty-one patients completed the entire study and were included in the analysis. Pioglitazone treatment (n = 10) reduced hepatic fat as assessed by magnetic resonance spectroscopy, despite a significant increase in body weight (Δ = 3.7 kg); plasma FGF21 levels did not change (1.9  ±  0.6 to 2.2  ±  0.6 ng/ml [mean ± SEM]). However, combined pioglitazone and exenatide therapy (n = 11) was associated with a significant reduction of FGF21 levels (2.3  ±  0.5 to 1.1  ±  0.3 ng/ml) and a greater decrease in hepatic fat. Besides weight gain observed in the pioglitazone-treated patients, lower extremity oedema was observed as a side effect in two of the ten patients. Three patients who received pioglitazone and exenatide combination therapy complained of significant nausea that was self-limiting and did not require them to leave the study. In DIO mice, exendin-4 for 4 weeks significantly reduced hepatic triacylglycerol content, decreased hepatic FGF21 protein and mRNA, and enhanced phosphorylation of hepatic AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase, although no significant difference in weight and body fat was observed. Hepatic FGF21 correlated inversely with hepatic AMPK phosphorylation CONCLUSIONS/INTERPRETATION: In type 2 diabetes mellitus, combined pioglitazone and exenatide therapy is associated with a reduction in plasma FGF21 levels, as well as a greater decrease in hepatic fat than that achieved with pioglitazone therapy. In DIO mice, exendin-4 treatment reduces hepatic triacylglycerol and FGF21 protein, and enhances hepatic AMPK phosphorylation, suggesting an improvement of hepatic FGF21 resistance. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov NCT 01432405. |
DOI: | 10.1007/s00125-011-2317-z |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs |
---|
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T01 | 5'-AMP-activated protein kinase subunit beta-1 | PRKAB1 | activator | Kinase | Q9Y478 | AAKB1_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T28 | Fibroblast growth factor 21 | FGF21 | analogue | Secreted | Q9NSA1 | FGF21_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D129 | Exenatide | Biological drug | DB01276 | GLP1R activator; GLP1R agonist | Improve insulin resistance | Under clinical trials | Details |
D225 | Metformin | Chemical drug | DB00331 | PRKAB1 inducer activator; ETEDH inhibitor; GPD1 inhibitor | Improve insulin resistance | Under clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D366 | Thiazolidinediones | Chemical drug | DB11898 | -- | -- | Under clinical trials | Details |
D275 | Pioglitazone | Chemical drug | DB01132 | PPARG agonist | Improve insulin resistance | Advanced in clinical trials | Details |
D157 | Glucophage | Chemical drug | DB00331 | -- | -- | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |