Research Article Details
Article ID: | A25440 |
PMID: | 21839075 |
Source: | Eur J Pharmacol |
Title: | Berberine reducing insulin resistance by up-regulating IRS-2 mRNA expression in nonalcoholic fatty liver disease (NAFLD) rat liver. |
Abstract: | This study was performed to investigate the molecular mechanism and the therapeutic effect of berberine on nonalcoholic fatty liver disease (NAFLD). Rat models were given a high-fat diet (42% kcal) until they developed NAFLD, then were given normal saline (n=10), berberine (n-=10) at 187.5mg/kg/day, or pioglitazone (n=10) at 10.0mg/kg/day intragastrically for 4 weeks, respectively, and evaluated by hyperinsulinemic euglycemic clamping for insulin sensitivity. Serum biochemical markers and liver triglyceride (TG) were analyzed, real-time RT-PCR for mRNA expression and western blotting for protein expression of insulin receptor (IR) and insulin receptor substrate-2 (IRS-2) in liver tissues were performed, and hepatic histopathology in the rat models with NAFLD at the end of treatment was compared with normal controls (n=10). The NAFLD rats developed insulin resistance, showing increased fasting blood glucose and insulin levels, decreased glucose infusion rate, increased weight of epididymal fat (g/100g body weight), obvious hepatic steatosis and inflammation, and down-regulated IRS-2 mRNA and protein levels compared with normal controls (all P<0.05). In comparison with those treated with saline, model rats treated with berberine or pioglitazone underwent significant recovery, including up-regulated IRS-2 mRNA and protein (all P<0.05). Our results indicate that berberine may improve insulin resistance of NAFLD by up-regulating mRNA and protein levels of IRS-2, a key molecule in the insulin signaling pathway, suggesting that berberine may be used to treat NAFLD. |
DOI: | 10.1016/j.ejphar.2011.07.036 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D275 | Pioglitazone | Chemical drug | DB01132 | PPARG agonist | Improve insulin resistance | Advanced in clinical trials | Details |
D083 | CLA | Chemical drug | DB01211 | KCNH2; SLCO1B1; SLCO1B3 | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D029 | Berberine | Chemical drug | DB04115 | AMPK activator | Improve insulin resistance | Under clinical trials | Details |