Research Article Details
Article ID: | A26390 |
PMID: | 20537997 |
Source: | Gastroenterology |
Title: | Genetic covariance between gamma-glutamyl transpeptidase and fatty liver risk factors: role of beta2-adrenergic receptor genetic variation in twins. |
Abstract: | BACKGROUND & AIMS: Plasma levels of gamma-glutamyl transpeptidase (GGT) are associated with risk factors for nonalcoholic fatty liver disease (NAFLD), such as dyslipidemia, insulin resistance (IR), and hypertension. Limited data exist on whether there is genetic covariance between plasma levels of GGT and NAFLD risk factors. Variants of beta2-adrenergic receptor gene (ADRB2) have been associated with dyslipidemia, IR, and hypertension, but its effect on GGT secretion is not known. We estimated the heritability of GGT using a twin-study design and examined the genetic covariance between GGT levels, IR, hypertension, levels of low-density lipoproteins and triglycerides, and ADRB2 variants. METHODS: We studied phenotypes of 362 twins; the heritabilities of increased GGT activity and genetic covariance with NAFLD risk factors were estimated by variance-component methodology. ADRB2 genotype associations with plasma GGT activity were examined using generalized estimating equations to account for intra-twinship correlations. RESULTS: GGT activity was heritable at 49% +/- 8% of the twin cohort and had significant covariance with IR; insulin, triglyceride, and uric acid levels; and diastolic blood pressure. In generalized estimating equation models, the most common haplotype of ADRB2 was significantly associated with plasma GGT activity. Five single nucleotide polymorphisms in ADRB2 were associated with levels of GGT; ADRB2 haplotypes displayed pleiotropic effects on GGT and triglyceride levels. CONCLUSIONS: In a twin study, GGT shared genetic codetermination with traits of metabolic syndrome. The ADRB2 gene had pleiotropic effects on plasma levels of GGT and triglycerides, indicating linked pathways (eg, adrenergic) between genetic susceptibility to NAFLD and metabolic syndrome. |
DOI: | 10.1053/j.gastro.2010.06.009 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I13 | 3146 | Lipid metabolism disorder | An inherited metabolic disorder that involves the creation and degradation of lipids. http://en.wikipedia.org/wiki/Lipid_metabolism | disease of metabolism/ inherited metabolic disorder | Details |
I12 | 10763 | Hypertension | An artery disease characterized by chronic elevated blood pressure in the arteries. https://en.wikipedia.org/wiki/Hypertension, https://www.ncbi.nlm.nih.gov/pubmed/24352797 | disease of anatomical entity/ cardiovascular system disease/vascular disease/ artery disease | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |