Research Article Details
Article ID: | A26499 |
PMID: | 20392512 |
Source: | J Hepatol |
Title: | Involvement of microsomal triglyceride transfer protein in nonalcoholic steatohepatitis in novel spontaneous mouse model. |
Abstract: | BACKGROUND & AIMS: Nonalcoholic fatty liver disease (NAFLD) is currently recognized as a global health issue and encompasses a wide spectrum of entities, ranging from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH). The lack of a spontaneous animal model of NASH, however, has hampered basic research in this field. METHODS: We examined the hepatic lesions in the inbred Fatty Liver Shionogi (FLS) mouse, which exhibits type 2 diabetes, and investigated the molecular mechanism leading to NAFLD/NASH. Using vector-mediated hepatic expression of microsomal triglyceride transfer protein (MTP), a key molecule for very low density lipoprotein (VLDL) assembly and export, its contribution to the hepatic lesions as well as to glucose intolerance was examined. RESULTS: The FLS mouse, maintained on normal chow, exhibited excessive hepatic triglyceride (TG) accumulation due to impaired VLDL secretion, and subsequently hepatic lesions comparable to NASH, with increased expression of inflammatory molecules as well as insulin resistance. Gene expression and Western blot analyses demonstrated reduced hepatic expression of MTP in the FLS mouse. Hepatic induction of MTP resulted in a reduction in hepatic TG accumulation, improvement of VLDL export, and amelioration of NASH-like lesions, as well as glucose intolerance. CONCLUSIONS: These data suggest that the FLS mouse could serve as a spontaneous model of NASH with insulin resistance, and that reduced MTP is involved in the development of NASH, pointing towards MTP as a critical target for the prevention and treatment of NASH. |
DOI: | 10.1016/j.jhep.2009.12.033 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |