Research Article Details
Article ID: | A02756 |
PMID: | 34257817 |
Source: | Oxid Med Cell Longev |
Title: | The Therapeutic Effects and Mechanisms of Quercetin on Metabolic Diseases: Pharmacological Data and Clinical Evidence. |
Abstract: | Metabolic diseases have become major public health issues worldwide. Searching for effective drugs for treating metabolic diseases from natural compounds has attracted increasing attention. Quercetin, an important natural flavonoid, is extensively present in fruits, vegetables, and medicinal plants. Due to its potentially beneficial effects on human health, quercetin has become the focus of medicinal attention. In this review, we provide a timely and comprehensive summary of the pharmacological advances and clinical data of quercetin in the treatment of three metabolic diseases, including diabetes, hyperlipidemia, and nonalcoholic fatty liver disease (NAFLD). Accumulating evidences obtained from animal experiments prove that quercetin has beneficial effects on these three diseases. It can promote insulin secretion, improve insulin resistance, lower blood lipid levels, inhibit inflammation and oxidative stress, alleviate hepatic lipid accumulation, and regulate gut microbiota disorders in animal models. However, human clinical studies on the effects of quercetin in diabetes, hyperlipidemia, and NAFLD remain scarce. More clinical trials with larger sample sizes and longer trial durations are needed to verify its true effectiveness in human subjects. Moreover, another important issue that needs to be resolved in future research is to improve the bioavailability of quercetin. This review may provide valuable information for the basic research, drug development, and clinical application of quercetin in the treatment of metabolic diseases. |
DOI: | 10.1155/2021/6678662 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S06 | Regulating intestinal flora | intestine gut microbiota; gut microbiota | farnesoid X receptor (FXR); fibroblast growth factor-19 (FGF19) | Probiotics; Prebiotics; Rifaximin; Yaq-001; Cilofexor; EDP-305; EYP001a; INT-767 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |
D293 | Quercetin | Supplement | DB04216 | AHR; EIF3F; SF3B3; NR1I2 activator | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |