Research Article Details
Article ID: | A03455 |
PMID: | 33994437 |
Source: | Intern Med |
Title: | Effects of Canagliflozin on Hepatic Steatosis, Visceral Fat and Skeletal Muscle among Patients with Type 2 Diabetes and Non-alcoholic Fatty Liver Disease. |
Abstract: | Objective We assessed the effect of canagliflozin, an sodium-glucose co-transporter type-2 inhibitor, on hepatic steatosis using three imaging modalities: magnetic resonance imaging (MRI), computed tomography, and transient elastography. We further determined factors associated with improving hepatic steatosis by canagliflozin among patients with type 2 diabetes and non-alcoholic fatty liver disease (NAFLD). Methods We conducted a six-month prospective single-arm study between August 2015 and June 2017. The primary outcome was the change in hepatic steatosis assessed using the hepatic proton density fat fraction (PDFF) on MRI before and after treatment with canagliflozin. The secondary outcomes were changes in measures of glucose metabolism, including the hepatic glucose uptake on fluorodeoxyglucose-positron emission tomography, and the inflammation and volumes of visceral and subcutaneous adipose tissue and skeletal muscle. Patients Nine patients with type 2 diabetes and NAFLD completed this study. All participants received canagliflozin at a dose of 100 mg daily. Results Canagliflozin caused a significant reduction in hepatic PDFF from baseline [median 20.6% (interquartile range 11.7%, 29.8%)] after 6 months [10.6% (5.4%, 22.6%), p=0.008]. Canagliflozin also significantly reduced the body weight, glycated hemoglobin, homeostasis model assessment of insulin resistance (HOMA-IR), high sensitivity C-reactive protein (hs-CRP), and volumes of adipose tissue and skeletal muscle (all p<0.05). The reduction in hepatic PDFF was not correlated with changes in the body weight, HOMA-IR, hs-CRP, or volume of adipose tissue and skeletal muscle from baseline after six months. Conclusion Among patients with type 2 diabetes and NAFLD, canagliflozin improved hepatic steatosis. The effect may be independent of reducing adiposity, insulin resistance, inflammation, and skeletal muscle volume. |
DOI: | 10.2169/internalmedicine.7134-21 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D058 | Canagliflozin | Chemical drug | DB08907 | SGLT2 inhibitor | Improve insulin resistance | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |