Research Article Details
Article ID: | A00346 |
PMID: | 35126843 |
Source: | World J Hepatol |
Title: | Is there a role of lipid-lowering therapies in the management of fatty liver disease? |
Abstract: | Atherogenic dyslipidemia is characterized by increased triglyceride-rich lipoproteins and low high-density lipoprotein cholesterol concentrations. It is highly prevalent in non-alcoholic fatty liver disease (NAFLD) and contributes to the increased cardiovascular risk associated with this condition. Alongside insulin resistance it plays an important pathogenetic role in NAFLD/non-alcoholic steatohepatitis (NASH) development and progression. It has been shown that cholesterol-lowering reduces cardiovascular risk more in NAFLD vs non-NAFLD high-risk individuals. This evidence highlights the importance of effective lipid modulation in NAFLD. In this narrative review the effects of the most commonly used lipid-lowering therapies on liver outcomes alongside their therapeutic implications in NAFLD/NASH are critically discussed. Preclinical and clinical evidence suggests that statins reduce hepatic steatosis, inflammation and fibrosis in patients with NAFLD/NASH. Most data are derived from observational and small prospective clinical studies using changes in liver enzyme activities, steatosis/fibrosis scores, and imaging evidence of steatosis as surrogates. Also, relevant histologic benefits were noted in small biopsy studies. Atorvastatin and rosuvastatin showed greater benefits, whereas data for other statins are scarce and sometimes conflicting. Similar studies to those of statins showed efficacy of ezetimibe against hepatic steatosis. However, no significant anti-inflammatory and anti-fibrotic actions of ezetimibe have been shown. Preclinical studies showed that fibrates through peroxisome proliferator-activated receptor (PPAR)α activation may have a role in NAFLD prevention and management. Nevertheless, no relevant benefits have been noted in human studies. Species-related differences in PPARα expression and its activation responsiveness may help explain this discrepancy. Omega-3 fatty acids reduced hepatic steatosis in numerous heterogeneous studies, but their benefits on hepatic inflammation and fibrosis have not been established. Promising preliminary data for the highly purified eicosapentaenoic acid require further confirmation. Observational studies suggest that proprotein convertase subtilisin/kexin9 inhibitors may also have a role in the management of NAFLD, though this needs to be established by future prospective studies. |
DOI: | 10.4254/wjh.v14.i1.119 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I13 | 3146 | Lipid metabolism disorder | An inherited metabolic disorder that involves the creation and degradation of lipids. http://en.wikipedia.org/wiki/Lipid_metabolism | disease of metabolism/ inherited metabolic disorder | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D258 | Omega 3 PUFA | Chemical drug | DB11133 | PPARG ligand; PPARA activator | Hypolipidemic drug | Under clinical trials | Details |
D131 | Ezetimibe | Chemical drug | DB00973 | SOAT1 inhibitor; | Enhance lipid metabolism | Under clinical trials | Details |
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D527 | EPA/DHA | Supplement | DB11133 | -- | -- | Under clinical trials | Details |
D593 | GSI | Miscellany | -- | Notch inhibitor | Anti-fibrosis | Under investigation | Details |
D020 | Atorvastatin | Chemical drug | DB01076 | DPP4 inhibitor; AHR agonist; HDAC2 inhibitor; NR1I3 ligand | Enhance lipid metabolism | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D312 | Rosuvastatin | Chemical drug | DB01098 | HMGCR inhibitor | Enhance lipid metabolism | Under clinical trials | Details |
D349 | Statins | Miscellany | -- | -- | -- | Under clinical trials | Details |
D125 | Epanova | Chemical drug | DB11133 | PPARG ligand; PPARA activator | Enhance lipid metabolism | Under clinical trials | Details |