Research Article Details

Article ID: A36013
PMID: 19205029
Source: Hepatology
Title: Pioglitazone promotes survival and prevents hepatic regeneration failure after partial hepatectomy in obese and diabetic KK-A(y) mice.
Abstract: UNLABELLED: Pathogenesis of metabolic syndrome-related nonalcoholic steatohepatitis (NASH) involves abnormal tissue-repairing responses in the liver. We investigated the effect of pioglitazone, a thiazolidinedione derivative (TZD), on hepatic regenerative responses in obese, diabetic KK-A(y) mice. Male KK-A(y) mice 9 weeks after birth underwent two-thirds partial hepatectomy (PH) after repeated intragastric injections of pioglitazone (25 mg/kg) for 5 days. Almost half of the KK-A(y) mice died within 48 hours of PH;however, mortality was completely prevented in mice pretreated with pioglitazone. In KK-A(y) mice, bromodeoxyuridine (BrdU) incorporation to hepatocyte nuclei 48 hours after PH reached only 1%; however, pioglitazone pretreatment significantly increased BrdU-positive cells to 8%. Cyclin D1 was barely detectable in KK-A(y) mice within 48 hours after PH. In contrast, overt expression of cyclin D1 was observed 24 hours after PH in KK-A(y) mice pretreated with pioglitazone. Hepatic tumor necrosis factor alpha (TNF-alpha) messenger RNA (mRNA) was tremendously increased 1 hour after PH in KK-A(y) mice, the levels reaching ninefold over C57Bl/6 given PH, whereas pioglitazone blunted this increase by almost three-fourths. Pioglitazone normalized hypoadiponectinemia in KK-A(y) mice almost completely. Serum interleukin (IL)-6 and leptin levels were elevated extensively 24 hours after PH in KK-A(y) mice, whereas the levels were largely decreased in KK-A(y) mice given pioglitazone. Indeed, pioglitazone prevented aberrant increases in signal transducers and activators of transcription (STAT)3 phosphorylation and suppressor of cytokine signaling (SOCS)-3 mRNA in the liver in KK-A(y) mice. CONCLUSION: These findings indicated that pioglitazone improved hepatic regeneration failure in KK-A(y) mice. The mechanism underlying the effect of pioglitazone on regeneration failure most likely involves normalization of expression pattern of adipokines and subsequent cytokine responses during the early stage of PH.
DOI: 10.1002/hep.22828