Research Article Details
Article ID: | A36341 |
PMID: | 18408102 |
Source: | Gut |
Title: | Pharmacological IKK2 inhibition blocks liver steatosis and initiation of non-alcoholic steatohepatitis. |
Abstract: | BACKGROUND: Non-alcoholic-steatohepatitis (NASH) leading to fibrosis, end-stage cirrhosis and hepatocellular carcinoma is an increasing health problem in the Western world. Thus, the need for new therapeutic approaches is increasing. IKK2 plays a key role in the development of NASH by mediating inflammation and insulin resistance. AIM: Here the beneficial effects of a pharmacological IKK2 inhibitor (AS602868) on initial stages of NASH progression were tested. METHODS: Mice were fed with a high sucrose diet (HSD) and daily-administered AS602868 and vehicle. The impact of AS602868 on NASH progression was studied using biochemical, histological and molecular markers. RESULTS: AS602868 treatment prevented HSD-induced weight gain and visceral fat accumulation. In adipose tissue, AS602868-treated mice exhibited a lower degree of infiltrated macrophages along with reduced proinflammatory cytokine production. Further analysis demonstrated that AS602868 treatment efficiently inhibited nuclear factor (NF)-kappaB activation in liver non-parenchymal cells and as a consequence attenuated the inflammatory response in the liver. Accordingly, in HSD/AS602868 mice, liver and adipose tissue adiponectin levels remained at levels comparable with those of control chow-fed mice, while they were decreased in HSD/vehicle animals. Additionally, AS602868 improved lipid beta-oxidation mediated by peroxisome proliferator-activated receptor (PPAR) alpha and PPARgamma. Systemic pharmacological IKK2 inhibition by AS602868 treatment efficiently prevented liver steatosis and inflammation, and improved antioxidant response. All this contributed to attenuation of NASH progression as evidenced by lower hepatocyte apoptosis and early stages of liver fibrosis. CONCLUSION: The data demonstrate that AS602868-mediated IKK2 inhibition represents a new therapeutic approach to prevent dietary-induced NASH progression. |
DOI: | 10.1136/gut.2007.134288 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
S13 | Anti-apoptosis | hepatocyte apoptosis; hepatic autophagy; apoptosis | Pan-caspase inhibitor | Emricasan | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T05 | Peroxisome proliferator-activated receptor gamma | PPARG | agonist | Nuclear hormone receptor | P37231 | PPARG_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |