Research Article Details
Article ID: | A04175 |
PMID: | 33727836 |
Source: | Diabetes Metab Syndr Obes |
Title: | Electromagnetic Fields Ameliorate Insulin Resistance and Hepatic Steatosis by Modulating Redox Homeostasis and SREBP-1c Expression in db/db Mice. |
Abstract: | Purpose: The prevalence of nonalcoholic fatty liver disease (NAFLD), which has recently become known as metabolic-associated fatty liver disease (MAFLD), has risen. However, pharmacotherapies for this disease have not been approved. Electromagnetic fields (EMFs) have excellent bioeffects on multiple diseases. However, the effects of EMFs on NAFLD are unknown. This study investigated the bioeffects of EMF exposure on insulin resistance, liver redox homeostasis and hepatic steatosis in db/db mice. Methods: Animals were sacrificed after EMF exposure for 8 weeks. The fasting blood glucose and insulin levels in the serum were tested. The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated by a formula. The levels of MDA, GSSG and GSH, biomarkers of redox, were assessed. The activities of CAT, SOD and GSH-Px were assessed. The body and liver weights were measured. Hepatic lipid accumulation was observed by Oil Red O staining. Hepatic CAT, GR, GSH-Px, SOD1, SOD2 and SREBP-1 expression was determined by Western blotting. Results: EMF exposure ameliorated insulin resistance and oxidative stress in the liver by downregulating the MDA and GSSG levels, increasing the reduced GSH levels, and promoting the GSH-Px levels in db/db mice. In addition, liver weight and triglyceride (TG) levels were reduced by EMF exposure. Simultaneously, EMF exposure improved hepatic steatosis by downregulating the protein expression of SREBP-1c. Conclusion: The present findings suggest that EMF exposure has positive effects in the treatment of NAFLD. |
DOI: | 10.2147/DMSO.S294020 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D158 | Glutathione | Chemical drug | DB00143 | MGST3; HPGDS; GSTM2; GSTM5; GPX7 cofactor; MGST2; GSS; GSTM1; GSTK1; GSTM3; GSTM4; GPX1 cofactor; GPX2 cofactor; GPX3 cofactor | -- | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |