Research Article Details
Article ID: | A04267 |
PMID: | 33684566 |
Source: | Biochim Biophys Acta Mol Cell Biol Lipids |
Title: | GDF11 rapidly increases lipid accumulation in liver cancer cells through ALK5-dependent signaling. |
Abstract: | Hepatocellular carcinoma (HCC) is one of the fastest-growing causes of cancer-related mortalities worldwide and this trend is mimicked by the surge of non-alcoholic fatty liver disease (NAFLD). Altered hepatic lipid metabolism promotes HCC development through inflammation and activation of oncogenes. GDF11 is a member of the TGF-β superfamily and recent data have implicated GDF11 as an anti-aging factor that can alleviate high-fat diet induced obesity, hyperglycemia, insulin resistance and NAFLD. However, its role in hepatic lipid metabolism is still not fully delineated. The aim of the present study was to characterize the role of GDF11 in hepatic and HCC cells lipid accumulation. To achieve this, we performed imaging, biochemical, lipidomic, and transcriptomic analyses in primary hepatocytes and in HCC cells treated with GDF11 to study the GDF11-activated signaling pathways. GDF11 treatment rapidly triggered ALK5-dependent SMAD2/3 nuclear translocation and elevated lipid droplets in HCC cells, but not in primary hepatocytes. In HCC cells, ALK5 inhibition hampered GDF11-mediated SMAD2/3 signaling and attenuated lipid accumulation. Using ultra-high-performance liquid chromatography/mass spectrometry, we detected increased accumulation of longer acyl-chain di/tri-acylglycerols and glycerophospholipids. Unbiased transcriptomic analysis identified TGF-β and PI3K-AKT signaling among the top pathways/cellular processes activated in GDF11 treated HCC cells. In summary, GDF11 supplementation promotes pro-lipogenic gene expression and lipid accumulation in HCC cells. Integration of our "omics" data pointed to a GDF11-induced upregulation of de novo lipogenesis through activation of ALK5/SMAD2/3/PI3K-AKT pathways. Thus, GDF11 could contribute to metabolic reprogramming and dysregulation of lipid metabolism in HCC cells, without effects on healthy hepatocytes. |
DOI: | 10.1016/j.bbalip.2021.158920 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S07 | Anti-lipogenesis | de novo lipogenesis; de novo lipogenesis; DNL; anti-lipogenic mechanisms; adipogenesis; anti-obesity | stearoyl-CoA desaturase 1 (SCD-1); Acetyl-coenzyme carboxylase; acyl-CoA carboxylase inhibitor (ACC inhibitor); stearoyl Coenzyme A desaturase inhibitor (SCD inhibitor); THR-beta selective agonist; DGAT2 inhibitor; FASN inhibitor | Aramchol; Firsocostat (GS-0976); VK-2809; ION 224 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D258 | Omega 3 PUFA | Chemical drug | DB11133 | PPARG ligand; PPARA activator | Hypolipidemic drug | Under clinical trials | Details |
D125 | Epanova | Chemical drug | DB11133 | PPARG ligand; PPARA activator | Enhance lipid metabolism | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |