Research Article Details
Article ID: | A42778 |
PMID: | 33500723 |
Source: | Theranostics |
Title: | Activation of N-methyl-D-aspartate receptor regulates insulin sensitivity and lipid metabolism. |
Abstract: | RATIONALE: Although significant progress has been made in understanding the mechanisms of steatosis and insulin resistance, the physiological functions of regulators in these processes remain largely elusive. Evidence has suggested that the glutamate/N-methyl-D-aspartic acid receptor (NMDAR) axis contributes to acute lung injury, pulmonary arterial hypertension, and diabetes, but the specific metabolic contribution of the glutamate/NMDAR axis is not clear. Here we provide data at the animal, cellular, and molecular levels to support the role of the glutamate/NMDAR axis as a therapeutic target for metabolic syndrome in obesity. Methods: We examined the glutamate level in the obese mouse induced by a high-fat diet (HFD) for 12 weeks. To assess the role of NMDAR in insulin sensitivity and lipid metabolism, we tested the effects of Memantine (an NMDAR antagonist) and NMDA (an NMDAR agonist) on mice fed with HFD or standard chow diet. The in vitros NMDAR roles were analyzed in hepatocytes and potential mechanisms involved in regulating lipid metabolism were investigated. Results: Glutamate was increased in the serum of HFD-treated mice. The NMDAR blockade by Memantine decreased the susceptibility to insulin resistance and hepatic steatosis in obese mice. NMDA treatment for 6 months induced obesity in mice, characterized by hyperglycemia, hyperlipidemia, insulin resistance, and pathological changes in the liver. We provided in vitro evidence demonstrating that NMDAR activation facilitated metabolic syndrome in obesity through promoting lipid accumulation. NMDAR inhibition attenuated lipid accumulation induced by palmitic acid. Mechanistically, NMDAR activation impaired fatty acid oxidation by reducing PPARα phosphorylation and activity. The PPARα activity reduction induced by NMDAR activation was reversibly mediated by ERK1/2 signaling. Conclusion: These findings revealed that targeting NMDAR might be a promising therapeutic strategy for metabolic syndrome in obesity. |
DOI: | 10.7150/thno.51666 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I12 | 10763 | Hypertension | An artery disease characterized by chronic elevated blood pressure in the arteries. https://en.wikipedia.org/wiki/Hypertension, https://www.ncbi.nlm.nih.gov/pubmed/24352797 | disease of anatomical entity/ cardiovascular system disease/vascular disease/ artery disease | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D010 | Amoxicillin | Chemical drug | DB01060 | -- | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |