Research Article Details
Article ID: | A43053 |
PMID: | 32693115 |
Source: | J Ethnopharmacol |
Title: | A review of the processed Polygonum multiflorum (Thunb.) for hepatoprotection: Clinical use, pharmacology and toxicology. |
Abstract: | ETHNOPHARMACOLOGICAL RELEVANCE: Polygonum multiflorum (Thunb.) (PMT) is a member of Polygonaceae. Traditional Chinese medicine considers that the processed PMT can tonify liver, nourish blood and blacken hair. In recent years, the processed PMT and its active ingredients have significant therapeutic effects on nonalcoholic fatty liver disease, alcoholic fatty liver disease, viral hepatitis, liver fibrosis and liver cancer. AIM OF THE STUDY: The main purpose of this review is to provide a critical appraisal of the existing knowledge on the clinical application, hepatoprotective pharmacology and hepatotoxicity, it provides a comprehensive evaluation of the liver function of the processed PMT. MATERIALS AND METHODS: A detailed literature search was conducted using various online search engines, such as Pubmed, Google Scholar, Mendeley, Web of Science and China National Knowledge Infrastructure (CNKI) database. The main active components of the processed PMT and the important factors in the occurrence and development of liver diseases are used as key words to carry out detailed literature retrieval. RESULTS: In animal and cell models, the processed PMT and active components can treat various liver diseases, such as fatty liver induced by high-fat diet, liver injury and fibrosis induced by drugs, viral transfected hepatitis, hepatocellular carcinoma, etc. They can protect liver by regulating lipid metabolism related enzymes, resisting insulin resistance, decreasing the expression of inflammatory cytokines, inhibiting the activation of hepatic stellate cells, reducing generation of extracellular matrix, promoting cancer cell apoptosis and controlling the growth of tumor cells, etc. However, improperly using of the processed PMT can cause liver injury, which is associated with the standardization of processing, the constitution of the patients, the characteristics of the disease, and the administration of dosage and time. CONCLUSION: The processed PMT can treat various liver diseases via reasonably using, and the active compounds (2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside, emodin, physcion, etc.) are promising candidate drugs for developing new liver protective agents. However, some components have a "toxic-effective" bidirectional effect, which should be used cautiously. |
DOI: | 10.1016/j.jep.2020.113121 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
S13 | Anti-apoptosis | hepatocyte apoptosis; hepatic autophagy; apoptosis | Pan-caspase inhibitor | Emricasan | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D596 | Emodin | Chemical drug | -- | DNA synthesis inhibitors; Protein synthesis inhibitors; Protein tyrosine kinase inhibitors; RNA synthesis inhibitors | Anti-fibrosis | Under investigation | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |