Research Article Details
Article ID: | A45796 |
PMID: | 22696577 |
Source: | Am J Physiol Regul Integr Comp Physiol |
Title: | Potential clinical translation of juvenile rodent inactivity models to study the onset of childhood obesity. |
Abstract: | According to the latest data from the Center for Disease Control and Prevention 17%, or 12.5 million, of children and adolescents aged 2-19 years in the United States are obese. Physical inactivity is designated as one of the actual causes of US deaths and undoubtedly contributes to the obesity epidemic in children and adults. Examining the effects of inactivity on physiological homeostasis during youth is crucial given that 58% of children between the ages 6-11 yr old fail to obtain the recommended 60 min/day of physical activity and 92% of adolescents fail to achieve this goal [Troiano et al. Med Sci Sports Exerc. 40, 2008]. Nonetheless, invasive mechanistic studies in children linking diminished physical activity with metabolic maladies are lacking for obvious ethical reasons. The rodent wheel lock (WL) model was adopted by our laboratory and others to study how different organ systems of juvenile rats respond to a cessation of daily physical activity. Our WL model houses rats in cages equipped with voluntary running wheels starting at 28 days of age. After a certain period of voluntary running (3 to 6 wk), the wheels are locked, thus preventing the rats' primary source of physical activity. The studies discussed herein suggest that obesity-associated maladies including skeletal muscle insulin resistance, hypothalamic leptin resistance, fatty acid oxidation impairments in skeletal muscle and adipose tissue, nonalcoholic fatty liver disease, and endothelial dysfunction are initiated in juvenile animals that are restrained from voluntary exercise via WL. The use of the juvenile rodent WL or other inactivity models will continue to provide a powerful clinical translational tool that can be used for primordial prevention of human childhood obesity. |
DOI: | 10.1152/ajpregu.00167.2012 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S08 | Lifestyle measures | Lifestyle intervention; weight loss; diet adaptation; dietary interventions; lifestyle modifications; Exercise | -- | -- | Details |
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |