Research Article Details
Article ID: | A00459 |
PMID: | 35072848 |
Source: | Inflammopharmacology |
Title: | The effects of metformin, pioglitazone, exenatide and exercise on fatty liver in obese diabetic rats: the role of IRS-1 and SOCS-3 molecules. |
Abstract: | BACKGROUND: Obesity-induced inflammation mechanism is seen as a mechanism that may be the cause of insulin resistance and non-alcoholic fatty liver disease (NAFLD). Pathological destruction of insulin signaling molecules such as insulin receptor substrate proteins (IRS), especially due to the increase of cytokine signal suppressors (SOCS), has been demonstrated in experimental diabetes. The aim of this study was to determine the effects of metformin, pioglitazone, exenatide and exercise treatments used in type 2 diabetes on fatty liver and the role of Irs-1 and Socs3 molecules in this process in obese diabetic rats. METHODS: The study was conducted on 48 Wistar albino adult male rats weighing 180-220 g and randomly divided into 6 groups. The obese rat model with fatty liver was formed with a 60% fat diet for 4 weeks. Afterwards, drug treatment with metformin (Ob + D + M), pioglitazone (Ob + D + P), exenatide (Ob + D + ExA)) or exercise (Ob + D + ExE) was applied for 4 weeks to these obese groups, in which diabetes was induced by streptozocin (STZ). At the end of the experimental protocol, liver tissue samples were taken from all rat groups and histopathological and genetic analyses were performed. RESULTS: The mean steatosis degrees of the Ob + D + ExA and Ob + D + ExE groups were statistically significantly decreased compared to the obese diabetic group (p < 0.001). The group with the lowest mean steatosis grade was the Ob + D + ExE. Decrease in SOCS-3 expression was significant in Ob + D + M and Ob + D + P groups than other groups (p < 0.05). Mean staining intensities of Ob + D + Ex group, Ob + D + ExE group and Ob + D + P group according to IRS-1 expression statistically significantly increased compared to obese diabetic group (p < 0.05). Average staining intensity of Ob + D + ExE group according to IRS-1 expression was significant than other groups. CONCLUSION: Exercise and exenatide treatments seemed to be the prominent treatment methods by showing a statistically significant effect in decreasing the degree of steatosis, decreasing the Socs3 expression level and increasing the Irs-1 expression level. |
DOI: | 10.1007/s10787-021-00916-6 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S08 | Lifestyle measures | Lifestyle intervention; weight loss; diet adaptation; dietary interventions; lifestyle modifications; Exercise | -- | -- | Details |
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D129 | Exenatide | Biological drug | DB01276 | GLP1R activator; GLP1R agonist | Improve insulin resistance | Under clinical trials | Details |
D225 | Metformin | Chemical drug | DB00331 | PRKAB1 inducer activator; ETEDH inhibitor; GPD1 inhibitor | Improve insulin resistance | Under clinical trials | Details |
D275 | Pioglitazone | Chemical drug | DB01132 | PPARG agonist | Improve insulin resistance | Advanced in clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |
D157 | Glucophage | Chemical drug | DB00331 | -- | -- | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |