Research Article Details
Article ID: | A46442 |
PMID: | 18627005 |
Source: | Hepatology |
Title: | Peroxisome proliferator-activated receptor-delta induces insulin-induced gene-1 and suppresses hepatic lipogenesis in obese diabetic mice. |
Abstract: | UNLABELLED: Primary nonalcoholic fatty liver disease is one of the most common forms of chronic liver diseases and is associated with insulin-resistant states such as diabetes and obesity. Recent work has revealed potential implications of peroxisome proliferator-activated receptor-delta (PPARdelta) in lipid homeostasis and insulin resistance. In this study, we examined the effect of PPARdelta on sterol regulatory element-binding protein-1 (SREBP-1), a pivotal transcription factor controlling lipogenesis in hepatocytes. Treatment with GW0742, the PPARdelta agonist, or overexpression of PPARdelta markedly reduced intracellular lipid accumulation. GW0742 and PPARdelta overexpression in hepatocytes induced the expression of insulin-induced gene-1 (Insig-1), an endoplasmic reticulum protein braking SREBP activation, at both the mRNA and the protein levels. PPARdelta inhibited the proteolytic processing of SREBP-1 into the mature active form, thereby suppressing the expression of the lipogenic genes fatty acid synthase, stearyl CoA desaturase-1, and acetyl coenzyme A carboxylase. Our results revealed a direct binding of PPARdelta to a noncanonical peroxisome proliferator responsive element motif upstream of the transcription initiation site of human Insig-1. The disruption of this site diminished the induction of Insig-1, which suggested that Insig-1 is a direct PPARdelta target gene in hepatocytes. Knockdown of endogenous Insig-1 attenuated the suppressive effect of GW0742 on SREBP-1 and its target genes, indicating PPARdelta inhibited SREBP-1 activation via induction of Insig-1. Furthermore, overexpression of PPARdelta by intravenous infection with the PPARdelta adenovirus induced the expression of Insig-1, suppressed SREBP-1 activation, and, consequently, ameliorated hepatic steatosis in obese db/db mice. CONCLUSION: Our study reveals a novel mechanism by which PPARdelta regulates lipogenesis, suggesting potential therapeutic applications of PPARdelta modulators in obesity and type 2 diabetes, as well as related steatotic liver diseases. |
DOI: | 10.1002/hep.22334 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T04 | Peroxisome proliferator-activated receptor delta | PPARD | agonist | Nuclear hormone receptor | Q03181 | PPARD_HUMAN | Details |
T20 | Fatty acid synthase | FASN | inhibitor | Enzyme | P49327 | FAS_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |