Research Article Details
Article ID: | A04658 |
PMID: | 33549451 |
Source: | Nutr Metab Cardiovasc Dis |
Title: | Apolipoprotein A5 controls fructose-induced metabolic dysregulation in mice. |
Abstract: | BACKGROUND AND AIMS: Western dietary habits are partially characterized by increased uptake of fructose, which contributes to metabolic dysregulation and associated liver diseases. For example, a diet enriched with fructose drives insulin resistance and non-alcoholic fatty liver disease (NAFLD). The molecular hubs that control fructose-induced metabolic dysregulation are poorly understood. Apolipoprotein A5 (apoA5) controls triglyceride metabolism with a putative role in hepatic lipid deposition. We explored apoA5 as a rheostat for fructose-induced hepatic and metabolic disease in mammals. METHODS AND RESULTS: ApoA5 knock out (-/-) and wildtype (wt) mice were fed with high fructose diet or standard diet for 10 weeks. Afterwards, we conducted a metabolic characterization by insulin tolerance test as well as oral glucose tolerance test. Additionally, hepatic lipid content as well as transcription patterns of key enzymes and transcription factors in glucose and lipid metabolism were evaluated. Despite comparable body weight, insulin sensitivity was significantly improved in high fructose diet fed apoA5 (-/-) when compared to wildtype mice on the same diet. In parallel, hepatic triglyceride content was significantly lower in apoA5 (-/-) mice than in wt mice. No difference was seen between apoA5 (-/-) and wt mice on a standard diet. CONCLUSION: ApoA5 is involved in fructose-induced metabolic dysregulation and associated hepatic steatosis suggesting that apoA5 may be a novel target to treat metabolic diseases. |
DOI: | 10.1016/j.numecd.2020.11.008 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D142 | Fructose | Chemical drug | DB04173 | -- | Intravenous nutrition drug | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |