Research Article Details
Article ID: | A49685 |
PMID: | 35671811 |
Source: | Life Sci |
Title: | Vildagliptin alleviates liver fibrosis in NASH diabetic rats via modulation of insulin resistance, oxidative stress, and inflammatory cascades. |
Abstract: | AIMS: This study investigates the therapeutic potential of Vilda in a NASH model with liver fibrosis and elucidates the underlying molecular mechanisms. MAIN METHODS: To induce NASH, male Sprague-Dawley rats were fed a high-fat diet for 24 weeks with a single dose of STZ (40 mg/kg, IP). Vilda was orally administered at two doses (10 and 20 mg/kg) for 20 weeks. KEY FINDINGS: The induction of NASH was validated by abnormalities in hepatotoxicity indices, lipid profile, oxidative stress markers, and pathologically by marked fat deposition in hepatic tissues together with severe inflammatory cell infiltration. Moreover, NASH-affected rats demonstrated reduced insulin sensitivity manifested as elevated fasting blood glucose levels and disrupted homeostasis model assessment for insulin resistance. Vilda, at both doses, effectively abrogated all these pathological features of NASH. Mechanistically, these hepatoprotective properties of Vilda can be attributed to its antioxidant effects, anti-inflammatory effects (by inhibiting the TNF-α, NF-κB, JNK, and JAK/STAT pathways), and insulin-sensitizing effect (by upregulating the IRS-1/PI3K/Akt pathway). Besides, Vilda successfully counteracted NASH-associated liver fibrosis by downregulating the TGF-β1 pathway. SIGNIFICANCE: The hepatoprotective and antifibrotic effects of Vilda were mostly dose-dependent. Collectively, this study offered a promising therapeutic avenue for Vilda as a novel strategy for counteracting the pathological progression of NASH and associated liver fibrosis. |
DOI: | 10.1016/j.lfs.2022.120695 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D383 | Vildagliptin | Chemical drug | DB04876 | DPP4 inhibitor | Antidiabetic drug | Under clinical trials | Details |