Research Article Details
Article ID: | A50268 |
PMID: | 35449197 |
Source: | Cell Death Discov |
Title: | HtrA2/Omi mitigates NAFLD in high-fat-fed mice by ameliorating mitochondrial dysfunction and restoring autophagic flux. |
Abstract: | Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver metabolic syndrome which affects millions of people worldwide. Recently, improving mitochondrial function and autophagic ability have been proposed as a means to prevent NAFLD. It has been previously described that high-temperature requirement protein A2 (HtrA2/Omi) favors mitochondrial homeostasis and autophagy in hepatocytes. Thus, we explored the effects of HtrA2/Omi on regulating mitochondrial function and autophagy during NAFLD development. High-fat diet (HFD)-induced NAFLD in mice and free fatty acids (FFAs)-induced hepatocytes steatosis in vitro were established. Adeno-associated viruses (AAV) in vivo and plasmid in vitro were used to restore HtrA2/Omi expression. In this study, we reported that HtrA2/Omi expression considerably decreased in liver tissues from the HFD-induced NAFLD model and in L02 cells with FFA-treated. However, restoring HtrA2/Omi ameliorated hepatic steatosis, confirming by improved serum lipid profiles, glucose homeostasis, insulin resistance, histopathological lipid accumulation, and the gene expression related to lipid metabolism. Moreover, HtrA2/Omi also attenuated HFD-mediated mitochondrial dysfunction and autophagic blockage. TEM analysis revealed that liver mitochondrial structure and autophagosome formation were improved in hepatic HtrA2/Omi administration mice compared to HFD mice. And hepatic HtrA2/Omi overexpression enhanced mitochondrial fatty acid β-oxidation gene expression, elevated LC3II protein levels, induced LC3 puncta, and decreased SQSTM1/p62 protein levels. Furthermore, hepatic HtrA2/Omi increased respiratory exchange ratio and heat production in mice. Finally, HtrA2/Omi overexpression by plasmid significantly diminished lipid accumulation, mitochondrial dysfunction, and autophagic inhibition in FFA-treated L02 hepatocytes. Taken together, we demonstrated that HtrA2/Omi was a potential candidate for the treatment of NAFLD via improving mitochondrial functions, as well as restoring autophagic flux. |
DOI: | 10.1038/s41420-022-01022-4 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |