Research Article Details

Article ID: A50361
PMID: 35417923
Source: Hum Mol Genet
Title: Role of non-coding RNAs on liver metabolism and NAFLD pathogenesis.
Abstract: Obesity and type 2 diabetes are major contributors to the growing prevalence of non-alcoholic fatty liver disease (NAFLD), a chronic liver condition characterized by accumulation of fat in individuals without a significant amount of alcohol intake. The NAFLD spectrum ranges from simple steatosis (early stages, known as NAFL), to non-alcoholic steatohepatitis (NASH), which can progress to fibrosis and cirrhosis or hepatocellular carcinoma. Obesity, type 2 diabetes, and NAFLD are strongly associated with insulin resistance. In the liver, insulin resistance increases hepatic glucose output, lipogenesis, and VLDL secretion, leading to a combination of hyperglycemia and hypertriglyceridemia. Aberrant gene expression is a hallmark of insulin resistance. Non-coding RNAs (ncRNAs) have emerged as prominent regulators of gene expression that operate at the transcriptional, post-transcriptional, and post-translational levels. In the last couple of decades a wealth of studies have provided evidence that most processes of liver metabolism are orchestrated by ncRNAs. This review focuses on the role of microRNAs, long non-coding RNAs and circular RNAs as coordinators of hepatic function, as well as the current understanding on how their dysregulation contributes to abnormal metabolism and pathophysiology in animal models of insulin resistance and NAFLD. Moreover, ncRNAs are emerging as useful biomarkers that may be able to discriminate between the different stages of NAFLD. The potential of ncRNAs as therapeutic drugs for NAFLD treatment and as biomarkers is discussed.
DOI: 10.1093/hmg/ddac088