Research Article Details
Article ID: | A05193 |
PMID: | 33341026 |
Source: | Phytomedicine |
Title: | Δ9-Tetrahydrocannabinolic Acid markedly alleviates liver fibrosis and inflammation in mice. |
Abstract: | BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the Western world, and it is closely associated to obesity, type 2 diabetes mellitus, and dyslipidemia. Medicinal cannabis and some neutral cannabinoids have been suggested as a potential therapy for liver diseases. HYPOTHESIS: Δ9-tetrahydrocannabinolic acid (Δ9-THCA), the non-psychotropic precursor of Δ9-THC, is one of the most abundant cannabinoids presents in Cannabis Sativa. However, its biological activities have been poorly investigated. Herein, we studied the antifibrotic and antiinflammatory activities of Δ9-THCA in two different animal models of liver injury, providing a rationale for additional studies on the medicinal use of this cannabinoid in the treatment of liver fibrosis and the management of NAFLD. STUDY DESIGN: The antifibrotic activity of Δ9-THCA in vitro was investigated in the cell lines LX-2 and NIH-3T3-Col1A2-luc. Non-alcoholic liver fibrosis was induced in mice by CCl4 treatment or, alternatively, by 23-week high fat diet (HFD) feeding. Δ9-THCA was administered daily intraperitoneally during the CCl4 treatment or during the last 3 weeks in HFD-fed mice. METHODS: TGFβ-induced profibrotic gene expression was analyzed by luciferase and qPCR assays. Liver fibrosis and inflammation were assessed by immunochemistry and qPCR. Blood glucose, insulin, leptin and triglyceride levels were measured in HFD mice. RESULTS: Δ9-THCA inhibited the expression of Tenascin C (TNC) and Col3A1 induced by TGFβ in LX-2 cells and the transcriptional activity of the Col1A2 promoter in fibroblasts. Δ9-THCA significantly attenuated CCl4-induced liver fibrosis and inflammation and reduced T cell and macrophage infiltration. Mice fed HFD for 23 weeks developed severe obesity (DIO), fatty liver and marked liver fibrosis, accompanied by immune cell infiltration. Δ9-THCA, significantly reduced body weight and adiposity, improved glucose tolerance, and drastically attenuated DIO-induced liver fibrosis and immune cell infiltration. CONCLUSIONS: Δ9-THCA prevents TGFβ-induced fibrotic markers in vitro and liver inflammation and fibrogenesis in vivo, providing a rationale for additional studies on the medicinal use of this cannabinoid, as well as cannabis preparations containing it, for the treatment of liver fibrosis and the management of NAFLD. |
DOI: | 10.1016/j.phymed.2020.153426 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I13 | 3146 | Lipid metabolism disorder | An inherited metabolic disorder that involves the creation and degradation of lipids. http://en.wikipedia.org/wiki/Lipid_metabolism | disease of metabolism/ inherited metabolic disorder | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |