Research Article Details
Article ID: | A51935 |
PMID: | 33083279 |
Source: | Liver Cancer |
Title: | Dietary Restriction Suppresses Steatosis-Associated Hepatic Tumorigenesis in Hepatitis C Virus Core Gene Transgenic Mice. |
Abstract: | BACKGROUND AND AIMS: Dietary restriction (DR) is a preventive strategy for obesity, metabolic syndrome, cardiovascular disease, and diabetes. Although an interconnection between obesity, metabolic syndrome, fatty liver, and hepatocellular carcinoma has been documented, the mechanism and impact of DR on steatosis-derived hepatocarcinogenesis are not fully understood. This study aimed to evaluate whether DR can prevent hepatic tumorigenesis. METHODS: Male hepatitis C virus core gene transgenic (HCVcpTg) mice that develop spontaneous age-dependent insulin resistance, hepatic steatosis, and ensuing liver tumor development without apparent hepatic fibrosis, were fed with either a control diet ad libitum (control group) or 70% of the same control diet (DR group) for 15 months, and liver phenotypes were investigated. RESULTS: DR significantly reduced the number and volume of liver tumors. DR attenuated hepatic oxidative and endoplasmic reticulum stress and markedly suppressed nuclear factor-κB, signal transducer and activator of transcription 3 (STAT3) and STAT5, and phosphorylation of extracellular signal-regulated kinase, leading to downregulation of several pro-oncogenic mediators, such as cyclin D1. Serum insulin and insulin-like growth factor 1 levels, as well as hepatic expression of insulin receptor substrate 1/2, phosphatidylinositol-3 kinase, and serine/threonine-protein kinase AKT, were downregulated by DR. A transcriptome analysis revealed that STAT3 signaling and lipogenesis were the most suppressed hepatocarcinogenic pathways affected by DR. Additionally, DR stimulated autophagy and p62/sequestosome 1 degradation, enhanced phosphorylation of AMP-activated protein kinase α, increased fibroblast growth factor 21 expression, and attenuated expression of senescence-associated secretory phenotypes. CONCLUSION: DR suppressed steatosis-associated hepatic tumorigenesis in HCVcpTg mice, mainly due to attenuation of pathways involved in inflammation, cellular stress, cell proliferation, insulin signaling, and senescence. These findings support the notion that persistent 30% reduction of daily food intake is beneficial for preventing steatosis-associated hepatocarcinogenesis caused by HCV core protein. |
DOI: | 10.1159/000508308 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |