Research Article Details
Article ID: | A51957 |
PMID: | 32915147 |
Source: | Turk J Gastroenterol |
Title: | Magnetic resonance spectroscopy to assess hepatic steatosis in patients with lipodystrophy. |
Abstract: | BACKGROUND/AIMS: Lipodystrophy is a rare metabolic disorder characterized by near total or partial lack of subcutaneous adipose tissue and associated with insulin resistance. We aimed to evaluate the efficacy of magnetic resonance spectroscopy imaging (MRS) to explore the fat content of the liver in patients with lipodystrophy and to determine the relationship between the liver fat accumulation and clinical presentations of lipodystrophy. MATERIALS AND METHODS: Between July 2014 and February 2016, 34 patients with lipodystrophy were assessed by MRS for quantification of hepatic steatosis. All patients had metabolic abnormalities associated with insulin resistance. Metabolic parameters and the MRS findings were analyzed to identify potential correlations between the liver fat content and disease severity. RESULTS: The MRS fat ratios (MRS-FR) were markedly higher, indicating severe hepatic steatosis in lipodystrophy. Patients with generalized and partial lipodystrophy had comparable levels of MRS-FRs, although patients with generalized lipodystrophy were significantly younger. Patients with genetically based lipodystrophy had elevated MRS-FR compared to those with acquired lipodystrophy (p=0.042). The MRS-FR was positively correlated with liver enzyme alanine aminotransferase (p=0.028) and serum adiponectin (p=0.043). CONCLUSION: Our data suggest that MRS might be an effective, noninvasive imaging method to quantify hepatic fat content in patients with lipodystrophy. Further studies are needed to validate the technique and threshold values which would allow accurate comparison of data acquired by different machines and centers. |
DOI: | 10.5152/tjg.2020.19114 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I06 | 811 | Lipodystrophy | A connective tissue disease that is characterized by marked reduction, absence, and/or the redistribution of adipose tissue. https://www.ncbi.nlm.nih.gov/pubmed/25690482, https://www.ncbi.nlm.nih.gov/pubmed/25833179 | disease of anatomical entity/ musculoskeletal system disease/ connective tissue disease | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D199 | L-alanine | Chemical drug | DB00160 | KYNU | -- | Failed in clinical trials | Details |