Research Article Details
Article ID: | A52040 |
PMID: | 31988048 |
Source: | Biochim Biophys Acta Mol Cell Biol Lipids |
Title: | Dysregulation of microRNA-125a contributes to obesity-associated insulin resistance and dysregulates lipid metabolism in mice. |
Abstract: | Obesity is associated with an increased risk of developing insulin resistance (IR) and type 2 diabetes (T2D). A diverse group of factors including miRNA has been implicated in the pathogenesis of these two metabolic conditions, although underlying molecular mechanisms involved are not well defined. Here, we provide evidence that hepatic miR-125a levels are diminished in both genetic as well as dietary mouse models of obesity. Overexpression of miR-125a enhanced insulin signaling and attenuated cellular lipid accumulation in HepG2 cells and Hepa1-6 cells. Likewise, treatment of mice with ago-miR-125a increased insulin sensitivity, similar to overexpression of miR-125a, whereas treatment of mice with antago-miR-125a blunted the insulin sensitivity. Furthermore, overexpression of miR-125a in mice previously fed a high-fat diet (HFD), significantly improved insulin sensitivity, and attenuated obesity-linked hepatic steatosis and hepatocyte lipid accumulation. In addition, we show that ELOVL fatty acid elongase 6 (Elovl6) is a direct target of miR-125a, and participates in miR-125a mediated regulation of insulin sensitivity and lipid metabolism. These data led us to conclude that dysregulated miR-125a expression augments the development of obesity-induced IR and that miR-125a might serve as a therapeutic target for the development of new drug(s) in the clinical management of metabolic diseases. |
DOI: | 10.1016/j.bbalip.2020.158640 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |