Research Article Details
Article ID: | A52813 |
PMID: | 21429276 |
Source: | Br J Nutr |
Title: | Effect of trans-fat, fructose and monosodium glutamate feeding on feline weight gain, adiposity, insulin sensitivity, adipokine and lipid profile. |
Abstract: | The incidence of obesity and type 2 diabetes mellitus (T2DM) is increasing, and new experimental models are required to investigate the diverse aspects of these polygenic diseases, which are intimately linked in terms of aetiology. Feline T2DM has been shown to closely resemble human T2DM in terms of its clinical, pathological and physiological features. Our aim was to develop a feline model of diet-induced weight gain, adiposity and metabolic deregulation, and to examine correlates of weight and body fat change, insulin homeostasis, lipid profile, adipokines and clinical chemistry, in order to study associations which may shed light on the mechanism of diet-induced metabolic dysregulation. We used a combination of partially hydrogenated vegetable shortening and high-fructose corn syrup to generate a high-fat-high-fructose diet. The effects of this diet were compared with an isoenergetic standard chow, either in the presence or absence of 1.125 % dietary monosodium glutamate (MSG). Dual-energy X-ray absorptiometry body imaging and a glucose tolerance test were performed. The present results indicate that dietary MSG increased weight gain and adiposity, and reduced insulin sensitivity (P < 0.05), whereas high-fat-high-fructose feeding resulted in elevated cortisol and markers of liver dysfunction (P < 0.01). The combination of all three dietary constituents resulted in lower insulin levels and elevated serum β-hydroxybutyrate and cortisol (P < 0.05). This combination also resulted in a lower first-phase insulin release during glucose tolerance testing (P < 0.001). In conclusion, markers of insulin deregulation and metabolic dysfunction associated with adiposity and T2DM can be induced by dietary factors in a feline model. |
DOI: | 10.1017/S000711451000588X |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D142 | Fructose | Chemical drug | DB04173 | -- | Intravenous nutrition drug | Under clinical trials | Details |