Research Article Details
Article ID: | A06109 |
PMID: | 33004402 |
Source: | BMJ Open Diabetes Res Care |
Title: | Metabolic and energetic benefits of microRNA-22 inhibition. |
Abstract: | INTRODUCTION: We previously demonstrated in primary cultures of human subcutaneous adipocytes and in a mouse model of diet-induced obesity that specific microRNA-22-3p antagomirs produce a significant reduction of fat mass and an improvement of several metabolic parameters. These effects are related to the activation of target genes such as KDM3A, KDM6B, PPARA, PPARGC1B and SIRT1 involved in lipid catabolism, thermogenesis, insulin sensitivity and glucose homeostasis. RESEARCH DESIGN AND METHODS: We now report a dedicated study exploring over the course of 3 months the metabolic and energetic effects of subcutaneous administration of our first miR-22-3p antagomir drug candidate (APT-110) in adult C57BL/6 male mice. Body composition, various blood parameters and energy expenditure were measured at several timepoints between week 12 and week 27 of age. RESULTS: Weekly subcutaneous injections of APT-110 for 12 weeks produced a sustained increase of energy expenditure as early as day 11 of treatment, a significant fat mass reduction, but no change of appetite nor physical activity. Insulin sensitivity as well as circulating glucose, cholesterol and leptin were improved. There was a dramatic reduction of liver steatosis after 3 months of active treatment. RNA sequencing revealed an activation of lipid metabolism pathways in a tissue-specific manner. CONCLUSIONS: These original findings suggest that microRNA-22-3p inhibition could lead to a potent treatment of fat accumulation, insulin resistance, and related complex metabolic disorders such as obesity, type 2 diabetes mellitus and non-alcoholic fatty liver disease. |
DOI: | 10.1136/bmjdrc-2020-001478 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T03 | Peroxisome proliferator-activated receptor alpha | PPARA | agonist | Nuclear hormone receptor | Q07869 | PPARA_HUMAN | Details |
T05 | Peroxisome proliferator-activated receptor gamma | PPARG | agonist | Nuclear hormone receptor | P37231 | PPARG_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D545 | Pig placenta extract | Biological extract | -- | -- | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |