Research Article Details
Article ID: | A06251 |
PMID: | 32952340 |
Source: | World J Gastroenterol |
Title: | Tumor necrosis factor alpha receptor 1 deficiency in hepatocytes does not protect from non-alcoholic steatohepatitis, but attenuates insulin resistance in mice. |
Abstract: | BACKGROUND: End-stage liver disease caused by non-alcoholic steatohepatitis (NASH) is the second leading indication for liver transplantation. To date, only moderately effective pharmacotherapies exist to treat NASH. Understanding the pathogenesis of NASH is therefore crucial for the development of new therapies. The inflammatory cytokine tumor necrosis factor alpha (TNF-α) is important for the progression of liver disease. TNF signaling via TNF receptor 1 (TNFR1) has been hypothesized to be important for the development of NASH and hepatocellular carcinoma in whole-body knockout animal models. AIM: To investigate the role of TNFR1 signaling in hepatocytes for steatohepatitis development in a mouse model of diet-induced NASH. METHODS: NASH was induced by a western-style fast-food diet in mice deficient for TNFR1 in hepatocytes (TNFR1ΔHEP) and their wild-type littermates (TNFR1fl/fl). Glucose tolerance was assessed after 18 wk and insulin resistance after 19 wk of feeding. After 20 wk mice were assessed for features of NASH and the metabolic syndrome such as liver weight, liver steatosis, liver fibrosis and markers of liver inflammation. RESULTS: Obesity, liver injury, inflammation, steatosis and fibrosis was not different between TNFR1ΔHEP and TNFR1fl/fl mice. However, Tnfr1 deficiency in hepatocytes protected against glucose intolerance and insulin resistance. CONCLUSION: Our results indicate that deficiency of TNFR1 signaling in hepatocytes does not protect from diet-induced NASH. However, improved insulin resistance in this model strengthens the role of the liver in glucose homeostasis. |
DOI: | 10.3748/wjg.v26.i33.4933 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S10 | Liver transplantation | -- | -- | -- | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |