Research Article Details
Article ID: | A06367 |
PMID: | 32912770 |
Source: | Dig Liver Dis |
Title: | Antidiabetic drugs and non-alcoholic fatty liver disease: A systematic review, meta-analysis and evidence map. |
Abstract: | BACKGROUND: The efficacy of antidiabetic agents for the treatment of non-alcoholic fatty liver disease (NAFLD) remains unclear. AIM: To conduct a meta-analysis to study the efficacy of pioglitazone and three novel anti-diabetic agents: glucagon-like peptide-1 (GLP-1) agonists, sodium-glucose co-transporter-2 (SGLT2) inhibitors, and dipeptidyl-peptidase-4 (DPP4) inhibitors in treating NAFLD. METHODS: Online databases were searched in May 2020 for randomized clinical trials. Results from random-effects meta-analysis are presented as weighted mean differences (WMDs) or standard mean differences (SMDs) and corresponding 95% confidence intervals (CIs). RESULTS: Twenty-six studies (n=946 NAFLD patients) were included. Reductions in ALT were seen with all four drugs: pioglitazone (MD -38.41, p<0.001), SGLT2 inhibitors (MD -16.17, p<0.001), GLP-1 agonists (MD -27.98, p=0.04) and DPP-4 inhibitors (MD -7.41, p<0.001). Pioglitazone (SMD -1.01; p<0.001) and GLP-1 agonists (SMD -2.53, p=0.03) also demonstrated significant improvements in liver steatosis. SGLT2 inhibitors (SMD -4.64, p=0.06) and DPP-4 (SMD -2.49, p=0.06) inhibitors trended towards reduced steatosis; however, these results were non-significant. CONCLUSION: Pioglitazone demonstrates significant improvements in transaminases and liver histology in both diabetic and non-diabetic NAFLD patients. Early evidence from diabetic NAFLD patients suggests that novel antidiabetics may lead to improvements in liver enzymes and hepatic steatosis, and this should encourage further research into possible utility of these drugs in treating NAFLD. |
DOI: | 10.1016/j.dld.2020.08.021 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs |
---|
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D549 | SGLT2 inhibitor | Chemical drug | -- | SGLT2 inhibitor | -- | Under clinical trials | Details |
D275 | Pioglitazone | Chemical drug | DB01132 | PPARG agonist | Improve insulin resistance | Advanced in clinical trials | Details |
D155 | Glucagon | Biological drug | DB00040 | GCGR agonist | Antidiabetic drug | Under clinical trials | Details |
D316 | S-adenosyl-L-methionine | Chemical drug | DB00118 | GNMT cofactor | Antiviral | Under clinical trials | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |