Research Article Details
Article ID: | A07273 |
PMID: | 32559006 |
Source: | Liver Int |
Title: | Bacterial antigen translocation and age as BMI-independent contributing factors on systemic inflammation in NAFLD patients. |
Abstract: | BACKGROUND & AIMS: Low-grade systemic inflammation is a crucial landmark in NAFLD favouring disease progression and comorbidities. We evaluated the input of circulating bacterial antigens on systemic markers of inflammation in NAFLD patients. PATIENTS & METHODS: Multicenter cross-sectional study including consecutive patients with biopsy-proven NAFLD. Demographic, metabolic and fibrosis-related variables were collected. Circulating bacterial antigens were quantified in blood. Toll-like receptor SNPs were genotyped. Serum cytokine levels were evaluated. Peripheral blood mononuclear cell response to bacterial antigens was evaluated in vitro. RESULTS: Three hundred and fifteen patients from five Spanish hospitals were distributed by BMI. At least, one bacterial antigenic type was found in 66 patients with BMI < 30 (63.4%) and 163 patients with BMI > 30 (77.3%) (P = .014). HOMA-IR was significantly higher in the presence of circulating antigens among patients with BMI < 30. NASH and significant fibrosis in non-obese patients were more frequent in the presence of at least two circulating antigenic types. Allelic frequencies of TLR variants were similar to controls and did not affect clinical or laboratory parameters. Pro-inflammatory cytokines were significantly increased in patients with bacterial antigens, regardless of BMI. TLR gene and protein expression levels were significantly increased in PBMCs from patients with bacterial antigens. Antigen concentrations independently influenced TNF-α and IL-6, in both BMI subgroups of patients. Age independently influenced TNF-α and IL-6 in non-obese patients, and TNF-α in obese patients. CONCLUSION: Serum circulating bacterial antigens as well as age were BMI-independent factors related to increased systemic inflammation in NAFLD and provides insight on the multifaceted sources of inflammation in these patients. |
DOI: | 10.1111/liv.14571 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |