Research Article Details

Article ID: A09612
PMID: 31675274
Source: Metab Syndr Relat Disord
Title: Relevant Features in Nonalcoholic Steatohepatitis Determined Using Machine Learning for Feature Selection.
Abstract: Aim: We investigated the prevalence and the most relevant features of nonalcoholic steatohepatitis (NASH), a stage of nonalcoholic fatty liver disease, (NAFLD) in which the inflammation of hepatocytes can lead to increased cardiovascular risk, liver fibrosis, cirrhosis, and the need for liver transplant. Methods: We analyzed data from 2239 hypertensive patients using descriptive statistics and supervised machine learning algorithms, including the least absolute shrinkage and selection operator and random forest classifier, to select the most relevant features of NASH. Results: The prevalence of NASH among our hypertensive patients was 11.3%. In univariate analyses, it was associated with metabolic syndrome, type 2 diabetes, insulin resistance, and dyslipidemia. Ferritin and serum insulin were the most relevant features in the final model, with a sensitivity of 70%, specificity of 79%, and area under the curve of 0.79. Conclusion: Ferritin and insulin are significant predictors of NASH. Clinicians may use these to better assess cardiovascular risk and provide better management to hypertensive patients with NASH. Machine-learning algorithms may help health care providers make decisions.
DOI: 10.1089/met.2019.0052