Research Article Details
Article ID: | A10580 |
PMID: | 31281460 |
Source: | Exp Ther Med |
Title: | Aged garlic extract ameliorates fatty liver and insulin resistance and improves the gut microbiota profile in a mouse model of insulin resistance. |
Abstract: | Aged garlic extract (AGE) produced by the aging process has various beneficial pharmacological effects. In this study, the effects of AGE on fatty liver, insulin resistance and intestinal microbiota were compared between ddY-H mice, an insulin resistance mouse, and ddY-L mice, normal mice. Mice were fed an AGE-supplemented diet (4% w/w) for 7 weeks. The administration of AGE had no effect on the body weight and dietary intake of both types of mice. In the ddY-H mice, the serum levels of glucose and insulin were increased and glucose tolerance was impaired; however, the administration of AGE ameliorated these abnormal conditions. AGE did not have these effects in ddY-L mice. Triglyceride (TG) accumulation in the liver and fat absorption from the digestive tract were increased in the ddY-H mice; however, the administration of AGE reduced this increase. On the other hand, AGE exerted no such effects in the ddY-L mice. In addition, the gut microbiota has been shown to be closely associated with obesity, diabetes, dyslipidemia and non-alcoholic fatty liver disease in human and animal models. The bacterial composition of the gut microbiota in the feces of the ddY-H mice did not differ from that of the ddY-L mice at 5 weeks of age; however, it was altered in the mice at 9 and 12 weeks of age even when the mice were fed a standard diet. In the ddY-H mice, the relative presence of Lactobacillales was increased, while that of Bifidobacterium, Clostridium cluster XVIII and Prevotella was decreased. The alteration of the bacterial composition in the ddY-H mice was reversed by the administration of AGE; however, this effect of AGE was not observed in the ddY-L mice. On the whole, the findings of this study indicate that AGE improves abnormal fat accumulation and insulin resistance, and also alters the intestinal flora in ddY-H mice, suggesting the possibility that these effects of AGE may be related. |
DOI: | 10.3892/etm.2019.7636 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S06 | Regulating intestinal flora | intestine gut microbiota; gut microbiota | farnesoid X receptor (FXR); fibroblast growth factor-19 (FGF19) | Probiotics; Prebiotics; Rifaximin; Yaq-001; Cilofexor; EDP-305; EYP001a; INT-767 | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I13 | 3146 | Lipid metabolism disorder | An inherited metabolic disorder that involves the creation and degradation of lipids. http://en.wikipedia.org/wiki/Lipid_metabolism | disease of metabolism/ inherited metabolic disorder | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D147 | Garlic | Biological drug | DB10532 | -- | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |