Research Article Details
Article ID: | A10819 |
PMID: | 31173696 |
Source: | Appl Physiol Nutr Metab |
Title: | Resveratrol protects against nonalcoholic fatty liver disease by improving lipid metabolism and redox homeostasis via the PPARα pathway. |
Abstract: | Resveratrol (RSV), a well-known bioactive compound, has been reported to exert a broad range of health benefits. Accumulating evidence suggests that RSV is beneficial for many metabolic diseases, including nonalcoholic fatty liver disease (NAFLD). This study investigated the preventive and therapeutic effects of RSV on high-fat diet (HFD)-induced NAFLD in rats and palmitate acid (PA)-induced hepatocyte steatosis in HepG2 cells. Hepatocytes were incubated with inhibitors of peroxisome proliferator-activated receptor α (PPARα) or short interfering RNAs (siRNAs) targeting PPARα, AMP-activated protein kinase (AMPK), and protein kinase A (PKA) to determine the underlying mechanisms. We found that RSV noticeably ameliorated HFD-induced hepatic steatosis in rats and inhibited PA-induced lipid accumulation in HepG2 cells. Moreover, RSV improved lipid metabolism, enhanced antioxidant capacity, and restored mitochondrial respiratory chain activities. Incubation with inhibitors of PPARα or PPARα siRNA abolished the protective effects of RSV on lipid metabolism and redox homeostasis. Furthermore, RSV activated the PKA/AMPK/PPARα signaling pathway. Our results provided direct evidence for a novel, PPARα-mediated mechanism responsible for the beneficial effects of RSV on hepatic steatosis. These findings may have important theoretical and application prospects for the prevention and treatment of NAFLD. Novelty RSV improved lipid metabolism and redox homeostasis and oxidative stress in NAFLD via the PKA/AMPK/PPARα signaling pathway. RSV may have a greater beneficial effect in the early prevention of hepatic steatosis. |
DOI: | 10.1139/apnm-2019-0057 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T01 | 5'-AMP-activated protein kinase subunit beta-1 | PRKAB1 | activator | Kinase | Q9Y478 | AAKB1_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class |
---|
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D589 | Minor allele-specific small interfering RNA | Miscellany | -- | PNPLA3-rs738409 (I148M) variant inhibitor | -- | Under investigation | Details |
D301 | Resveratrol | Chemical drug | DB02709 | ALOX15; ALOX5; AHR; NR1I2; NR1I3 | Anticancer agent | Under clinical trials | Details |