Research Article Details
Article ID: | A11280 |
PMID: | 30959577 |
Source: | Hepatology |
Title: | Fructose Promotes Leaky Gut, Endotoxemia, and Liver Fibrosis Through Ethanol-Inducible Cytochrome P450-2E1-Mediated Oxidative and Nitrative Stress. |
Abstract: | Fructose intake is known to induce obesity, insulin resistance, metabolic syndrome, and nonalcoholic fatty liver disease (NAFLD). We aimed to evaluate the effects of fructose drinking on gut leakiness, endotoxemia, and NAFLD and study the underlying mechanisms in rats, mice, and T84 colon cells. Levels of ileum junctional proteins, oxidative stress markers, and apoptosis-related proteins in rodents, T84 colonic cells, and human ileums were determined by immunoblotting, immunoprecipitation, and immunofluorescence analyses. Fructose drinking caused microbiome change, leaky gut, and hepatic inflammation/fibrosis with increased levels of nitroxidative stress marker proteins cytochrome P450-2E1 (CYP2E1), inducible nitric oxide synthase, and nitrated proteins in small intestine and liver of rodents. Fructose drinking significantly elevated plasma bacterial endotoxin levels, likely resulting from decreased levels of intestinal tight junction (TJ) proteins (zonula occludens 1, occludin, claudin-1, and claudin-4), adherent junction (AJ) proteins (β-catenin and E-cadherin), and desmosome plakoglobin, along with α-tubulin, in wild-type rodents, but not in fructose-exposed Cyp2e1-null mice. Consistently, decreased intestinal TJ/AJ proteins and increased hepatic inflammation with fibrosis were observed in autopsied obese people compared to lean individuals. Furthermore, histological and biochemical analyses showed markedly elevated hepatic fibrosis marker proteins in fructose-exposed rats compared to controls. Immunoprecipitation followed by immunoblot analyses revealed that intestinal TJ proteins were nitrated and ubiquitinated, leading to their decreased levels in fructose-exposed rats. Conclusion: These results showed that fructose intake causes protein nitration of intestinal TJ and AJ proteins, resulting in increased gut leakiness, endotoxemia, and steatohepatitis with liver fibrosis, at least partly, through a CYP2E1-dependent manner. |
DOI: | 10.1002/hep.30652 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S04 | Anti-oxidative stress | oxidative stress | α-tocopherol: antioxidant | Vitamin E | Details |
S13 | Anti-apoptosis | hepatocyte apoptosis; hepatic autophagy; apoptosis | Pan-caspase inhibitor | Emricasan | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D083 | CLA | Chemical drug | DB01211 | KCNH2; SLCO1B1; SLCO1B3 | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D142 | Fructose | Chemical drug | DB04173 | -- | Intravenous nutrition drug | Under clinical trials | Details |