Research Article Details
Article ID: | A12649 |
PMID: | 30347674 |
Source: | Nutrients |
Title: | Effects of Unfiltered Coffee and Bioactive Coffee Compounds on the Development of Metabolic Syndrome Components in a High-Fat-/High-Fructose-Fed Rat Model. |
Abstract: | The literature is inconsistent as to how coffee affects metabolic syndrome (MetS), and which bioactive compounds are responsible for its metabolic effects. This study aimed to evaluate the effects of unfiltered coffee on diet-induced MetS and investigate whether or not phenolic acids and trigonelline are the main bioactive compounds in coffee. Twenty-four male Sprague‒Dawley rats were fed a high-fat (35% W/W) diet plus 20% W/W fructose in drinking water for 14 weeks, and were randomized into three groups: control, coffee, or nutraceuticals (5-O-caffeoylquinic acid, caffeic acid, and trigonelline). Coffee or nutraceuticals were provided in drinking water at a dosage equal to 4 cups/day in a human. Compared to the controls, total food intake (p = 0.023) and mean body weight at endpoint (p = 0.016) and estimated average plasma glucose (p = 0.041) were lower only in the coffee group. Surrogate measures of insulin resistance including the overall fasting insulin (p = 0.010), endpoint HOMA-IR (p = 0.022), and oral glucose tolerance (p = 0.029) were improved in the coffee group. Circulating triglyceride levels were lower (p = 0.010), and histopathological and quantitative (p = 0.010) measurements indicated lower grades of liver steatosis compared to controls after long-term coffee consumption. In conclusion, a combination of phenolic acids and trigonelline was not as effective as coffee per se in improving the components of the MetS. This points to the role of other coffee chemicals and a potential synergism between compounds. |
DOI: | 10.3390/nu10101547 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D522 | Caffeic acid | Chemical drug | -- | STAT3 transcription factor inhibitor | -- | Under clinical trials | Details |
D142 | Fructose | Chemical drug | DB04173 | -- | Intravenous nutrition drug | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D248 | Obeticholic Acid | Chemical drug | DB05990 | NR1H4 activator; NR1H4 agonist; FXR agonist | Enhance lipid metabolism | Approval rejected | Details |
D094 | Cysteamine | Chemical drug | DB00847 | GSS stimulant | Renal drug | Under clinical trials | Details |
D095 | Cysteamine bitartrate | Chemical drug | DB00847 | -- | -- | Under clinical trials | Details |