Research Article Details
Article ID: | A12863 |
PMID: | 30250238 |
Source: | Sci Rep |
Title: | Human hepatic 3D spheroids as a model for steatosis and insulin resistance. |
Abstract: | Non-alcoholic fatty liver disease (NAFLD) has emerged as a public health concern as reflected in its widespread distribution in the general population. Yet, treatment options are scarce which is at least in part due to lack of reliable human in vitro disease models. Here, we report a human hepatic 3D spheroid system cultured under defined chemical conditions that has the potential to mimic steatotic conditions in a reversible manner, useful for identification of novel drug treatment conditions. Primary human hepatocytes (PHH) from different donors were cultured as spheroid microtissues in physiological in vivo -like culture conditions. Hepatic steatosis was induced over the course of three weeks in culture by supplementing the culture medium with pathophysiological concentrations of free fatty acids, carbohydrates and insulin. Effects of steatosis in the 3D system were evaluated on transcriptional, metabolomic and lipidomic levels. Free fatty acids on one hand as well as a combination of insulin and monosaccharides, promoted lipid accumulation in hepatocytes and increased expression of lipogenic genes, such as fatty acid synthase. This milieu also promoted development of insulin resistance within 2 weeks as manifested by an increase in gluconeogenic and insulin resistance markers, which are observed in type 2 diabetes mellitus and metabolic syndrome. Induced steatosis was reversible after withdrawal of lipogenic substrates and a further reduction in cellular fat content was observed following treatment with different antisteatotic compounds, such as metformin, glucagon, olaparib and antioxidants. Taken together, these results demonstrate that the 3D hepatic spheroids can serve as a valuable, HTS compatible model for the study of liver steatosis and facilitate translational discovery of novel drug targets. |
DOI: | 10.1038/s41598-018-32722-6 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D225 | Metformin | Chemical drug | DB00331 | PRKAB1 inducer activator; ETEDH inhibitor; GPD1 inhibitor | Improve insulin resistance | Under clinical trials | Details |
D328 | Serine | Chemical drug | DB00133 | SRR | Improve insulin resistance | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |
D155 | Glucagon | Biological drug | DB00040 | GCGR agonist | Antidiabetic drug | Under clinical trials | Details |
D157 | Glucophage | Chemical drug | DB00331 | -- | -- | Under clinical trials | Details |