Research Article Details
Article ID: | A13169 |
PMID: | 30103390 |
Source: | Nutrients |
Title: | Delphinidin Ameliorates Hepatic Triglyceride Accumulation in Human HepG2 Cells, but Not in Diet-Induced Obese Mice. |
Abstract: | Anthocyanin consumption is linked to benefits in obesity-related metabolic alterations and non-alcoholic fatty liver disease (NAFLD), though the functional role of delphinidin (Dp) is yet to be established. Therefore, this study examined the effects of Dp on metabolic alterations associated with NAFLD, and molecular mechanisms in HepG2 cells and diet-induced obese mice. Cells incubated with palmitate to induce lipid accumulation, concomitantly treated with Dp, reduced triglyceride accumulation by ~53%, and downregulated gene expression of CPT1A, SREBF1, and FASN without modifying AMP-activated protein kinase (AMPK) levels. C57BL/6Nhsd mice were fed a standard diet (control) or a high-fat/high-carbohydrate diet (HFHC) for 16 weeks. Mice in the HFHC group were subdivided and treated with Dp (HFHC-Dp, 15 mg/kg body weight/day) or a vehicle for four weeks. Dp did not affect body weight, energy intake, hyperglycemia, insulin resistance, or histological abnormalities elicited by the HFHC diet. Furthermore, the messenger RNA (mRNA) expressions of Acaca, and Fasn in hepatic or epididymal adipose tissue, and the hepatic sirtuin 1 (SIRT1)/liver kinase B1 (LKB1)/AMPK and proliferator-activated receptor alpha (PPARα) signaling axis did not significantly change due to the HFHC diet or Dp. In summary, Dp effectively reduced triglyceride accumulation in vitro through the modulation of lipid metabolic gene expression. However, a dose of Dp administrated in mice simulating the total daily anthocyanin intake in humans had no effect on either metabolic alterations or histological abnormalities associated with HFHC diets. |
DOI: | 10.3390/nu10081060 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T01 | 5'-AMP-activated protein kinase subunit beta-1 | PRKAB1 | activator | Kinase | Q9Y478 | AAKB1_HUMAN | Details |
T10 | Caspase-1 | CASP1 | inhibitor | Enzyme | P29466 | CASP1_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T20 | Fatty acid synthase | FASN | inhibitor | Enzyme | P49327 | FAS_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |
Drug ID | Drug Name | Type | DrugBank ID | Targets | Category | Latest Progress | |
---|---|---|---|---|---|---|---|
D579 | Emfilermin | Miscellany | -- | adipocytes | Enhance lipid metabolism | Under investigation | Details |
D010 | Amoxicillin | Chemical drug | DB01060 | -- | -- | Under clinical trials | Details |
D011 | Anthocyanin | Chemical drug | -- | -- | Anti-inflammatory | Failed in clinical trials | Details |
D080 | Citrulline | Chemical drug | DB00155 | -- | -- | Under clinical trials | Details |
D182 | Insulin | Biological drug | DB00030 | INSR agonist; CPE modulator&product of | -- | Under clinical trials | Details |