Research Article Details
Article ID: | A13504 |
PMID: | 29945982 |
Source: | J Endocrinol |
Title: | INT-767 prevents NASH and promotes visceral fat brown adipogenesis and mitochondrial function. |
Abstract: | The bile acid receptors, farnesoid X receptor (FXR) and Takeda G-protein-coupled receptor 5 (TGR5), regulate multiple pathways, including glucose and lipid metabolism. In a rabbit model of high-fat diet (HFD)-induced metabolic syndrome, long-term treatment with the dual FXR/TGR5 agonist INT-767 reduces visceral adipose tissue accumulation, hypercholesterolemia and nonalcoholic steatohepatitis. INT-767 significantly improves the hallmarks of insulin resistance in visceral adipose tissue (VAT) and induces mitochondrial and brown fat-specific markers. VAT preadipocytes isolated from INT-767-treated rabbits, compared to preadipocytes from HFD, show increased mRNA expression of brown adipogenesis markers. In addition, INT-767 induces improved mitochondrial ultrastructure and dynamic, reduced superoxide production and improved insulin signaling and lipid handling in preadipocytes. Both in vivo and in vitro treatments with INT-767 counteract, in preadipocytes, the HFD-induced alterations by upregulating genes related to mitochondrial biogenesis and function. In preadipocytes, INT-767 behaves mainly as a TGR5 agonist, directly activating dose dependently the cAMP/PKA pathway. However, in vitro experiments also suggest that FXR activation by INT-767 contributes to the insulin signaling improvement. INT-767 treatment counteracts HFD-induced liver histological alterations and normalizes the increased pro-inflammatory genes. INT-767 also induces a significant reduction of fatty acid synthesis and fibrosis markers, while increasing lipid handling, insulin signaling and mitochondrial markers. In conclusion, INT-767 significantly counteracts HFD-induced liver and fat alterations, restoring insulin sensitivity and prompting preadipocytes differentiation toward a metabolically healthy phenotype. |
DOI: | 10.1530/JOE-17-0557 |

Strategy ID | Therapy Strategy | Synonyms | Therapy Targets | Therapy Drugs | |
---|---|---|---|---|---|
S01 | Improve insulin resistance | insulin sensitizer; insulin resistance; glucose tolerance | Biguanide: increases 5-AMP activated protein kinase signaling; SGLT-2 inhibitor; Thiazalidinedione: selective PPAR-γ agonists; GLP-1 agonist | Metformin; Empagliflozin; Canagliflozin; Rosiglitazone; Pioglitazone; Liraglutide | Details |
S02 | Enhance lipid metabolism | triglyceride-lowering; lipid tolerance; lipid metabolism | 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) inhibitor; Decreases intestinal cholesterol absorption; FXR agonist; ACC inhibitor; FAS inhibitor; DGAT2 inhibitor; SCD-1 inhibitor | Atorvastatin; Ezetimibe; Obeticholic Acid; GS-9674; GS-0976; TVB-2640; IONIS-DGAT2rx; Aramchol; | Details |
S03 | Anti-fibrosis | fibrosis | Angiotensin Receptor Blocker (ARB); CCR2/CCR5 antagonist; Thyroid receptor β agonist; PEGylated human FGF21 analogue; Monoclonal antibody to lysyl oxidase-like 2 (LOXL2); Galectin-3 inhibitor; FGF19 variant | Losartan; Cenicriviroc; VK-2809; MGL-3196; Pegbelfermin; Simtuzumab; GR-MD-02; NGM282 | Details |
S05 | Anti-inflammatory | inflammatory | Bile acid; TNF-a inhibitor; Dual PPAR-α and -δ agonists; Toll-Like Receptor; (TLR)-4 antagonist; Caspase inhibitor; ASK-1 inhibitor | Ursodeoxycholic Acid; Pentoxifylline; Elafibranor; JKB-121; Emricasan; Selonsertib; | Details |
S07 | Anti-lipogenesis | de novo lipogenesis; de novo lipogenesis; DNL; anti-lipogenic mechanisms; adipogenesis; anti-obesity | stearoyl-CoA desaturase 1 (SCD-1); Acetyl-coenzyme carboxylase; acyl-CoA carboxylase inhibitor (ACC inhibitor); stearoyl Coenzyme A desaturase inhibitor (SCD inhibitor); THR-beta selective agonist; DGAT2 inhibitor; FASN inhibitor | Aramchol; Firsocostat (GS-0976); VK-2809; ION 224 | Details |
Target ID | Target Name | GENE | Action | Class | UniProtKB ID | Entry Name | |
---|---|---|---|---|---|---|---|
T17 | Farnesoid X-activated receptor | NR1H4 | agonist | Nuclear hormone receptor | Q96RI1 | NR1H4_HUMAN | Details |
T18 | Acetyl-CoA carboxylase 1 | ACACA | inhibitor | Enzyme | Q13085 | ACACA_HUMAN | Details |
T07 | Bile acid receptor | NR1H4 | agonist | Nuclear hormone receptor | Q96RI1 | NR1H4_HUMAN | Details |
Diseases ID | DO ID | Disease Name | Definition | Class | |
---|---|---|---|---|---|
I13 | 3146 | Lipid metabolism disorder | An inherited metabolic disorder that involves the creation and degradation of lipids. http://en.wikipedia.org/wiki/Lipid_metabolism | disease of metabolism/ inherited metabolic disorder | Details |
I05 | 9352 | Type 2 diabetes mellitus | A diabetes that is characterized by chronic hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism resulting from defects in insulin secretion, insulin action, or both. A diabetes mellitus that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. http://en.wikipedia.org/wiki/Diabetes, http://en.wikipedia.org/wiki/Diabetes_mellitus_type_2 | disease of metabolism/inherited metabolic disorder/ carbohydrate metabolic disorder/glucose metabolism disease/diabetes/ diabetes mellitus | Details |
I14 | 9970 | Obesity | An overnutrition that is characterized by excess body fat, traditionally defined as an elevated ratio of weight to height (specifically 30 kilograms per meter squared), has_material_basis_in a multifactorial etiology related to excess nutrition intake, decreased caloric utilization, and genetic susceptibility, and possibly medications and certain disorders of metabolism, endocrine function, and mental illness. https://en.wikipedia.org/wiki/Obesity | disease of metabolism/acquired metabolic disease/ nutrition disease/overnutrition | Details |